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a b s t r a c t

This paper studies the robust convergence properties of iterative learning control (ILC) for single-input,
single-output (SISO), nonrepetitive systems subject to iteration-dependent uncertainties that arise in not
only initial states and external disturbances but also plant models. Given an extended relative degree
condition, it is possible to propose necessary and sufficient (NAS) conditions for robust ILC convergence.
The tracking error bound is shown to depend continuously on the bounds of the iteration-dependent un-
certainties. When the iteration-dependent uncertainties are bounded, NAS conditions exist to guarantee
bounded system trajectories and output tracking error. If the iteration-dependent uncertainties converge,
then NAS conditions ensure bounded system trajectories and zero output tracking error. The results are
also extended to a class of affine nonlinear systems satisfying a Lipschitz condition. Simulation tests on a
representative batch process demonstrate the validity of the obtained robust ILC convergence results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative learning control (ILC) is an effective approach for
controlling processes that have both a finite time of operation
and are operated over-and-over from nominally the same initial
condition. Typically, ILC algorithms are based only on input–output
data, one of the most distinct features of ILC (see, e.g., the ILC
surveys Ahn, Chen, & Moore, 2007; Bristow, Tharayil, & Alleyne,
2006; Shen & Wang, 2014; Xu, 2011 and references therein). Due
to this feature, ILC is easy to implement in practice and many
application results of ILC have appeared in the areas of bothmotion
control (Bifaretti, Tomei, & Verrelli, 2011; Chien & Tayebi, 2008;
Freeman & Tan, 2013) and process control (Liu & Wang, 2012; Shi,
Gao, & Wu, 2005, 2006).
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For ILC problems, it is most common to assume that the plant
does not change from operation-to-operation though it may be
subject to model (parameter) uncertainties (see, e.g., Ahn, Moore,
& Chen, 2007; Nguyen & Banjerdpongchai, 2011; van deWijdeven,
Donkers, & Bosgra, 2009; Xu & Tan, 2002). We call this a repetitive
system, meaning that the system to be controlled is the same
from operation-to-operation. If a plant does not have such a
property, we call it a nonrepetitive system. Because uncertainties
are inevitable, especially in practical applications, robustness is
an important problem in ILC. Two robust ILC problems related
to iteration-dependent uncertainties have been studied in depth.
One problem relaxes the initial state resetting condition, and
studies whether or not the ILC system still works effectively in the
presence of iteration-dependent initial state shifts (see, e.g., Chen,
Wen, Gong, & Sun, 1999; Heinzinger, Fenwick, Paden, & Miyazaki,
1992; Sun & Wang, 2002; Zhu, Xu, Huang, & Hu, 2015). The
second problem takes into account possible iteration-dependent
external disturbances, and discusses the ILC tracking performance
from a disturbance rejection point of view (see, e.g., Chin, Qin,
Lee, & Cho, 2004; Gunnarsson & Norrlöf, 2006; Kim, Zheng, &
Sugie, 2007; Saab, 2001). However, these studies on robust ILC
apply only to repetitive systems, whereas we will show that
robust ILC is still applicable for nonrepetitive systems subject to
iteration-dependent plants. Further, we note that in limiting case
as nonrepetitive systems become repetitive, our results become
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equivalent to standard robust ILC results for repetitive systems.
Thus, in this paper we provide a more general overall theory.

In practice, we may encounter plants operating iteratively
that are nonrepetitive. One motivating class of practical non-
repetitive plants that are often operated in an ILC fashion is the
batch process (see, e.g., Shi et al., 2005, 2006). Another class of
motivating examples is the execution of a cooperative control task
performed by a networkedmulti-agent system that learns to coop-
erate, which however has a topology of interconnections between
agents that changes with training iteration (see, e.g., Meng, Jia, &
Du, 2015; Meng & Moore, 2016, 2017a). Since the interactions be-
tween agents also create a class of control plants in addition to all
agents’ dynamics, the iteration-dependent topologies create a non-
repetitive ILC problem. For other motivating examples, see Chen
and Moore (2002) for pick-and-place manipulators transporting
mass-dependent objects, Yan and Hou (2010) for freeway traffics
subject to the day-dependent free speed, and Butcher and Karimi
(2010) for linear permanent magnet synchronous motors subject
to the position-dependent force ripple.

Of particular note in looking at the ILC literature is the notion
that the nonrepetitiveness can be harnessed by making full use of
higher-order internal models in both linear (Chen & Moore, 2002;
Moore, Ahn, & Chen, 2008; Zhu et al., 2015) and nonlinear (Yin, Xu,
& Hou, 2010) cases. The focus in such studies is improvement of
ILC system performance in the face of nonrepetitiveness, such as
reducing baseline errors and accommodating iteration-dependent
disturbances, uncertainties and/or output reference trajectories.
However, for most results, the pattern or structure of iteration-
dependent uncertainties in ILC should be known in general, and
there are usually restrictive assumptions, such as high-order
updating laws in iteration (Chen & Moore, 2002; Moore et al.,
2008; Yin et al., 2010; Zhu et al., 2015), exponential convergence
of disturbances or noises in iteration (Moore et al., 2008), and
identical alignment of initialization conditions (Yin et al., 2010).
Although there have been recent studies on ILC for nonrepetitive
systems (see, e.g., Altin & Barton, 2015; Meng & Moore, 2014,
2017b;), only sufficient conditions have been obtained for robust
convergence of the resulting ILC processes (although notably
Altin and Barton (2015) does give design guidelines for achieving
convergence). Moreover, there is a challenging problem that
exists about the relation between the relative degree and robust
convergence conditions of nonrepetitive ILC systems. Though this
is clear to follow in repetitive ILC systems (Ahn, Chen et al., 2007),
it is not easy to develop even for single-input, single-output (SISO),
nonrepetitive systems.

Previously, the authors have considered the case of discrete-
time ILC for nonrepetitive systems (Meng & Moore, 2014, 2017b).
In this paper, we give additional insights into the basic robust con-
vergence analysis problem for the SISO case. Specifically, we look
at robust ILC of nonrepetitive, SISO linear discrete-time systems
subject to iteration-dependent initial state shifts, external distur-
bances, and nonrepetitive system matrices. We present necessary
and sufficient (NAS) conditions for boundedness of system trajec-
tories and either boundedness or convergence to zero of the output
tracking error, in comparison with Meng and Moore (2017b) and
Meng andMoore (2014) that can offer only sufficient conditions. To
establish basic robust convergence results for SISO nonrepetitive
systems, we develop a new convergence analysis approach for ILC
by exploiting stability results for discrete parameterized systems.
We call it an ‘‘extended contractionmapping-based ILC’’ approach,
which leads to new NAS convergence conditions for the bounded-
ness of system trajectories for nonrepetitive ILC systems. Notably,
the resulting ILC processes no longer need to satisfy the contrac-
tion mapping principle at all iterations. Furthermore, an extended
relative degree condition is given, which provides a NAS guaran-
tee that there is a learning gain such that the convergence condi-
tions can be satisfied. This extended relative degree condition does

not require a relative degree requirement at each iteration. By con-
trast, it is hard to provide the convergence conditions in Meng and
Moore (2017b) with clear relative degree guarantees. Finally, we
haveNAS guarantees for the tracking error to be boundedwhen the
iteration-dependent parameters in the ILC systems are bounded
and for the perfect tracking when the iteration-dependent param-
eters converge with increasing iteration.

This paper is organized as follows. In Section 2, we present the
problemstatement of ILC for nonrepetitive systems. The ILC system
dynamics analysis is performed in Section 3, based on which we
propose main NAS convergence results for ILC of nonrepetitive
systems (note that all proofs are collected in the Appendices A and
B). Section 4 illustrates the theoretical results via simulation tests
for a nonrepetitive batch process (Shi et al., 2006). Conclusions are
given in Section 5.

Notations: Z = {1, 2, 3, . . .}; Z+ = {0, 1, 2, . . .}; ZN =

{0, 1, . . . ,N} for any N ∈ Z+; |a| denotes the absolute value of
a scalar a; and ∥A∥ denotes any matrix (or vector) norm of a ma-
trix (or vector) A. For any matrix function fl(k) depending on two
independent variables k and l, ∆ : fl(k) → 1fl(k) , fl+1(k) − fl(k)
denotes the forward (iteration) difference operator.

2. Problem statement

Consider a linear SISO discrete-time system with evolution
along an infinite iteration process, described by l ∈ Z+, and over a
finite time duration, denoted by k ∈ ZN , as follows:

xl(k + 1) = Al(k)xl(k) + bl(k)ul(k) + wl(k)
yl(k) = cl(k)xl(k) + vl(k)

(1)

where xl(k) ∈ Rn, ul(k) ∈ R, and yl(k) ∈ R are the state, con-
trol input, and output, respectively; wl(k) ∈ Rn and vl(k) ∈ R
are the external load andmeasurement disturbances, respectively;
and Al(k) ∈ Rn×n, bl(k) ∈ Rn, and cl(k) ∈ R1×n are both time-
dependent and iteration-dependent matrices. From the formula-
tion (1), we can see that the controlled system is not only subject
to nonrepetitive external disturbances but also nonrepetitive it-
self due to the iteration-dependent plant model matrices (Meng
& Moore, 2017b). Note that in ILC of repetitive systems, there is a
basic assumption on the system relative degree determined by the
first nonzeroMarkov parameter. Here, we similarly address this is-
sue for the nonrepetitive system (1) by considering the parameter
cl(k + 1)bl(k), which has not been solved for ILC of nonrepetitive
systems in Meng and Moore (2014, 2017b).

In this paper, we say that the system (1) achieves the perfect
tracking of any desired reference trajectory r(k) ∈ R over k ∈ ZN
if

lim
l→∞

yl(k) = r(k), ∀k = 1, 2, . . . ,N. (2)

It is worth noting that the tracking objective (2) may not
be achieved in the presence of iteration-dependent system
uncertainties. In this case, we desire the tracking error el(k) =

r(k) − yl(k) for k ∈ ZN and l ∈ Z+ to be bounded such that

sup
l≥0

|el(k)| ≤ βe and lim sup
l→∞

|el(k)| ≤ βesup ,

∀k = 1, 2, . . . ,N (3)

where βe > βesup ≥ 0 are finite bounds to be determined. At the
same time as the tracking objective (2) or (3), we desire the input
and state of the system (1) to be bounded such that

sup
l≥0

max
0≤k≤N−1

|ul(k)| ≤ βu < ∞,

sup
l≥0

max
0≤k≤N

∥xl(k)∥ ≤ βx < ∞
(4)
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