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a b s t r a c t

In this paper, we consider the distributed optimal coordination (DOC) problem for multi-agent systems
with the agents in the form of Euler–Lagrangian (EL) dynamics. We propose two different distributed
protocols for the heterogeneous continuous-time EL agents to achieve the optimization task. By
constructing suitable Lyapunov functions, we prove the global convergence to the optimal coordination
of the EL systems in the casewith parametric uncertainties, and the global exponential convergence in the
case without parametric uncertainties. Furthermore, we estimate the regret bound for an uncertain DOC
problemwith time-varying cost functions and inexact gradients. Finally, we provide a numerical example
to validate the theoretical results.
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1. Introduction

The distributed optimization problem (DOP) has attracted
much attention due to various practical applications in con-
vex computation, resource allocation, and localization (Nedic &
Ozdaglar, 2009; Yi, Hong, & Liu, 2016; Zhang, Lou, Hong & Xie,
2015), where a group of agents cooperatively solve a global op-
timization problem with the objective function as the sum of
privately-known local cost functions. Recently, more and more ef-
forts have been made for the continuous-time distributed opti-
mization algorithmdesign (Kia, Cortés, &Martínez, 2015;Wang, Yi,
& Hong, 2014), mainly because practical continuous-time systems
are required to achieve the optimization and some well-known
control techniques may facilitate the analysis and algorithm de-
sign of DOP. For example, control perspective was employed to the
design of distributed optimization algorithms based on the stan-
dard Lyapunov theory in Kia et al. (2015) andWang and Elia (2011),
while an internal-model-based design was proposed to solve the
DOP with disturbance rejection in Wang et al. (2014).
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The last decade haswitnessed the flourishing research activities
on cyber–physical systems,with an integration of computation and
communication with physical processes. In fact, distributed opti-
mization can be completed based on effective combination of the
(cyber) computation/communication and the (physical) dynam-
ics/control in many applications such as the target aggregation in
robotic networks (Meng et al., 2014), and the optimal power flow
in smart grids (Zhang, Papachristodoulou, & Li, 2015). In these situ-
ations, a group of continuous-time physical systems, such as robots
and power generators, are considered to cooperatively achieve the
corresponding optimal performance, in addition to their stabiliza-
tion or tracking concerns. To avoid the confusion with the con-
ventional DOP, we term this optimization problem with physical
dynamics as DOC problems.

One of the important physical systems is the EL system, which
can be used to describe many mechanical systems, such as mobile
robots, rigid bodies, and autonomous vehicles (Spong, Hutchinson,
& Vidyasagar, 2006). Motivated by various applications, including
spacecraft formation, attitude control of multiple rigid bodies,
cooperative search of multiple mobile robots, the study on the
distributed control of EL systems has drawn much attention in
recent years (referring to Cai & Huang, 2014; Foderaro, Ferrari, &
Wettergren, 2014; Meng et al., 2014). Also, few results have been
obtained for the DOC of the EL systems such as the semi-global
optimization results in Deng and Hong (2016).

The main objective of this paper is to study the general DOC
designs with global convergence for multiple heterogeneous EL
systems, even in the presence of uncertainties. The technical
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contributions of the paper include: (i) We formulate a DOC
problem for EL systems to investigate how a group of EL
agents cooperatively achieve optimization. This formulation can
be viewed as extensions of some well-known problems, including
DOP discussed in Kia et al. (2015) and Wang and Elia (2011) by
adding EL dynamics, multi-agent consensus of EL agents (see Cai
& Huang, 2014 and reference therein) by adding optimization
concerns, and the set aggregation of EL agents in Meng et al.
(2014) by considering general optimization functions. (ii) With
convex optimization and nonlinear control techniques, we provide
two distributed gradient-based algorithms for the multiple EL
agents. Then we prove the global convergence to the optimal
coordination of the system with parametric uncertainty, and the
global exponential convergence in the case without parametric
uncertainty. Note that the results are different from that for the
double-integrator agents without any convergence rate analysis
by LaSalle’s invariance principle in Zhang and Hong (2014) and
that with only semi-global results in Deng and Hong (2016). (iii)
We investigate the uncertain DOC problemwith time-varying cost
functions and inexact gradients for EL agents and estimate the
online regret bound in this case.

This paper is organized as follows. Section 2 formulates the DOC
problem with related preliminaries. Section 3 presents two differ-
ent distributed algorithms for the multiple EL agents to achieve
DOC along with their convergence analysis. Section 4 discusses an
uncertain optimization problem with the regret bound analysis.
Section 5 gives an example to illustrate the proposed algorithms.
Finally, Section 6 gathers concluding remarks.
Notations: ∥ · ∥ denotes the Euclidean norm of a vector or matrix.
For xi ∈ Rm, i = 1, . . . , n, col(x1, . . . , xn) = (x′

1, . . . , x
′
n)

′, where x′

is the transpose of x. Denote the increasingly ordered eigenvalues
of matrix X ∈ Rn×n by λ1(X), . . . , λn(X). Let 1n and 0n be the
n-dimensional vectors of all entries as 1 and 0, respectively.

2. Preliminaries and formulation

In this section, we first review related preliminaries from graph
theory (Godsil & Royle, 2001) and convex analysis (Rockafellar,
1972), and then formulate our problem.

2.1. Preliminaries

An undirected graph is a pair G = (V, E), where V = {1, 2,
. . . , n} is the vertex set and E ⊆ V × V is the edge set. An edge
(i, j) ∈ E shows that vertices i, j can communicatewith each other.
If there is a path between any twovertices ofG, thenG is connected.
Theweighted adjacencymatrix ofG is denoted byA = [aij] ∈ Rn×n,
where aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. The degree
matrix D = diag(d1, . . . , dn) ∈ Rn×n is a diagonal matrix with
elements di =

n
j=1 aij, i ∈ V . The Laplacian matrix of G is defined

as L = D − A. If G is connected, then the null space of L is spanned
by 1n, and all the other n − 1 eigenvalues of L are strictly positive.

A differentiable function f (·) : Rm
→ R is convex if f (x) −

f (y) ≥ ∇f (y)′(x−y),∀x, y ∈ Rm, where∇f stands for the gradient
of f . f isω-strongly convex (ω > 0) onRm if (∇f (x)−∇f (y))′(x−y)
≥ ω∥x − y∥2,∀x, y ∈ Rm. Moreover, f is θ-Lipschitz on Rm if
∥f (x)− f (y)∥ ≤ θ∥x − y∥,∀x, y ∈ Rm.

2.2. Problem formulation

Consider a network system composed of n heterogeneous EL
agents with an associated undirected communication graph G =

(V, E). The dynamics of each agent i ∈ V is described as follows:
Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi, (1)
where qi, q̇i ∈ Rm denote the generalized position and velocity
vectors, respectively;Mi(qi) ∈ Rm×m is the positive definite inertia
matrix; Ci(qi, q̇i)q̇i ∈ Rm is the vector for Coriolis and centripetal

forces; Gi(qi) ∈ Rm is the gravity vector; and τi ∈ Rm is the control
force. The dynamics of system (1) satisfies the following properties
(Spong et al., 2006):

Property 1. Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.

Property 2. For any x, y ∈ Rm,Mi(qi)x + Ci(qi, q̇i)y + Gi(qi) =

Ωi(qi, q̇i, x, y)ϕi, where ϕi ∈ Rp is a constant vector consisting of the
uncertain parameters of EL system (1), andΩi(qi, q̇i, x, y) ∈ Rm×p is
a known regression matrix that is only dependent on state variables.

In this EL multi-agent system, agent i ∈ V is endowed with
a local cost function fi : Rm

→ R, which is only known by this
agent. The global cost function f̃ : Rnm

→ R of the whole system
is defined as f̃ (q) :=

n
i=1 fi(qi), where q = col(q1, . . . , qn). The

objective of EL system (1) is to cooperatively achieve consensus
with the minimum global cost, namely, to solve the following
optimization problem:

min
p∈Rm

f (p), f (p) =

n
i=1

fi(p). (2)

Definition 1. The DOC is achieved for system (1), if, for any initial
condition (qi(0), q̇i(0)) with i ∈ V , all the EL agents converge to
the global optimal solution of problem (2), i.e., limt→∞ qi(t) = p∗,
limt→∞ q̇i(t) = 0m, i ∈ V , where p∗

∈ argminp∈Rm f (p).

In practice, the local cost functions in (2) may not be accu-
rately obtained, due to computational uncertainties or external
disturbances. The related problems have been considered in many
applications such as online optimization, target localization and
trajectory optimization (Foderaro et al., 2014; Hosseini, Chapman,
&Mesbahi, 2013; Yan, Sundaram, Vishwanathan, &Qi, 2013; Zhang
et al., 2015). Therefore, we are also interested in the DOC problem
in the presence of uncertainties. Consider the following uncertain
DOC problemwith time-varying cost functions for system (1), that
is,

min
p∈Rm

f̄ (p, t), f̄ (p, t) =

n
i=1

f̄i(p, t), (3)

where f̄i(p, t) = fi(p)+ gi(t) is the observed cost function of agent
i at time t with a time-varying uncertain function gi(t), and fi(p)
is the real cost function of agent i. Note that the uncertainty of
f̄i(p, t) results from its evolution in an uncertain way, and fi(p) in
(2) can be regarded as its nominal one without the time-varying
uncertainty. Different from the DOC problem, the uncertain DOC
problem (3) addresses how well the EL agents can cooperatively
complete the optimization task in the case of uncertain time-
varying cost functions.

The regret function has been widely used in the online
optimization literature (Hosseini et al., 2013; Yan et al., 2013) as
a performance measurement for a given algorithm to measure the
average difference between the actual total cost and the minimal
cost resulting from the best fixed decision p∗ over a given time
interval [0, T ], T ≥ 0, which is defined as

R(T ) =
1
T

 T

0

n
i=1


f̄i(qi(t), t)− f̄i(p∗, t)


dt. (4)

To proceed further, we introduce the following two assump-
tions, which were also used in Kia et al. (2015) and Wang et al.
(2014).

A1: The graph G is connected.
A2: For any i ∈ V, fi is differentiable and ω-strongly convex,

and ∇fi is θ-Lipschitz on Rm, where ω, θ > 0.
Under A2, f is strongly convex, which implies that problem (2)

has a unique optimal solution p∗. Here we consider the case of
0 ≤ ∥p∗

∥ < +∞.
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