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a b s t r a c t

This paper considers a class of bipartite containment tracking problems for leader-following networks
associated with signed digraphs. It admits multiple leaders which can be not only stationary but also
dynamically changing via interactions between them and their neighbored leaders. It is shown that the
followers can converge to the convex hull containing each leader’s trajectory as well as its symmetric
trajectory which is the same as it in modulus but different in sign. In particular, if the adjacency weight
matrix of the digraph is not signed but nonnegative, then the leader-following network achieves the
traditional containment tracking. Simulation tests are performed to illustrate the observed bipartite
containment tracking performances of signed networks.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Networks as well as coordination of nodes included in them
have attracted considerable attention over the past decade (see,
e.g., the surveys of Cao, Yu, Ren, & Chen, 2013; Olfati-Saber,
Fax, & Murray, 2007 and references therein). Consensus has been
considered as one of the fundamental coordination problems on
networks, which means the agreement of all nodes on a common
quantity (Olfati-Saber et al., 2007). In particular, when there is
only one leader (i.e., the node without neighbors) in the network,
each follower (i.e., the node with at least one neighbor) achieves
consensus in the way that it converges to the leader’s state (see,
e.g., Hu & Hong, 2007; Ni & Cheng, 2010; Su, Chen, Lam, & Lin,
2013). This actually is the so-called leader-following consensus
of networks, which however fails to work when there exist
multiple leaders. Since each leader is not influenced by any of
the other nodes (leaders or followers) in the network, its dynamic
behaviors are usually known as predetermined information. By
noting this property, containment control has been proposed
instead of consensus in networks with multiple leaders such that
all followers converge to the convex hull spanned by the leaders
(Ji, Ferrari-Trecate, Egerstedt, & Buffa, 2008).
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As a more general concept than leader-following consensus,
containment control has been studied in many applications and
areas. In Klotz, Cheng, and Dixon (2016), Mei, Ren, Chen, and
Ma (2013), Mei, Ren, and Ma (2012) and Meng, Ren, and You
(2010), distributed containment control protocols are proposed
for Lagrangian networks which are known as suitable descriptions
in many mechanical systems, such as autonomous vehicles and
robot manipulators. There are also various studies on containment
control for networks in the presence of single-integrator (Cao, Ren,
& Egerstedt, 2012; Liu, Xie, & Wang, 2012), double-integrator (Li,
Ren, & Xu, 2012; Lou &Hong, 2012), and general linear (Li, Ren, Liu,
& Fu, 2013; Liu, Cheng, Tan, & Hou, 2015) dynamics, respectively.
Recently, containment control problems have been successfully
solved for social networks (Kan, Klotz, Pasiliao, & Dixon, 2015)
and random networks (Kan, Shea, & Dixon, 2016), respectively.
Moreover, a common property of containment control results (see,
e.g., Cao et al., 2012; Li et al., 2013; Li et al., 2012; Liu et al., 2015; Liu
et al., 2012; Lou & Hong, 2012; Mei et al., 2012; Meng et al., 2010)
is that they allow not only stationary but also dynamic leaders. It
is worth noting, however, that the dynamic changing of leaders
differs from that of followers. Generally, the leaders’ dynamics are
caused by some external driving signals, whereas the followers are
enabled to dynamically evolve due to interactions between them
and their neighbored nodes.

Another fact worth noting is that the aforementioned studies
are devoted to the traditional networks including only cooperative
interactions. This class of traditional networks is conveniently
described by graphs associated with adjacency weight matrices
which are nonnegative. By contrast, there exists a more general
class of networks, which will be called signed networks, since
they are associated with signed graphs that can admit not only
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positive but also negative adjacency weights. Signed networks
may have cooperative and antagonistic interactions represented
by positive and negative adjacency weights, respectively, due
to which they have wide applications in, e.g., social networks
and economic systems. Take, for example, the social networks,
where a cooperative/antagonistic interaction can be considered
to reflect a friend/foe, trust/distrust, or like/dislike relationship
between nodes (Altafini, 2013). The existence of antagonistic
interactions produces more complex dynamic behaviors of signed
networks than those of traditional networks, see, e.g., bipartite
consensus of Altafini (2013) and Valcher andMisra (2014), interval
bipartite consensus of Hu and Zheng (2014) and Meng, Du, and
Jia (2016), and bipartite flocking of Fan, Zhang, and Wang (2014).
As pointed out in Altafini (2013) and Valcher and Misra (2014),
bipartite consensus means that the nodes in signed networks
reach agreement on a quantity which is the same for all only in
modulus but different in sign, and in particular includes as a special
case the standard consensus of traditional networks (since they
can be viewed as a special case of structurally balanced signed
networks). But, unlike standard consensus which holds under the
spanning tree condition (Ren & Beard, 2005), bipartite consensus
may not hold though signed networks fulfill the spanning tree
condition and instead interval bipartite consensus that possesses
more convergence behaviors may occur (Hu & Zheng, 2014; Meng
et al., 2016). With this observation, a further question is what
the convergence behaviors will be for leader-following signed
networks including multiple separate leaders since they violate
the spanning tree condition of, e.g., Hu and Zheng (2014) and
Meng et al. (2016) requiring globally reachable (root) nodes. To
our knowledge, no studies have been reported on answering this
question.

In this paper, we extend the notion of containment control to
directed signed networks including multiple dynamic leaders. It
is shown that all the followers can be guaranteed to converge
to the convex hull which is spanned by not only all the leaders’
trajectories but also their symmetric trajectories with the same
moduli but different signs. That is, the ‘‘bipartite containment
tracking’’ is ensured for signed networks. The dynamic leaders
evolve owing to interactions between them and their neighbors,
which is achieved via an extension of the traditional notion of
leaders (see, e.g., Cao et al., 2012, Definition 2.1) by allowing
them to have neighbors. Further, as a consequence of this
extended notion of leaders, the spanning tree can be extended
to a more general case, in which for each follower, there exists
at least one leader having some paths to the follower. By this
general connectivity condition, bipartite containment tracking is
achieved for signed networks, regardless of whether they are
structurally balanced or unbalanced. In particular, the bipartite
containment tracking results collapse into the class of interval
bipartite consensus results (see, e.g., Meng et al., 2016) when
all leaders are within a unique strongly connected component
of signed networks and become providing containment control
results when signed networks collapse into traditional networks,
respectively.

The remainder of our paper is organized as follows. We give
the bipartite containment tracking problem for signed networks
in Section 2 and propose main results in Section 3. In Section 4,
simulations are provided. We conclude the paper in Section 5 and
supply the proofs of claims and corollaries in Appendix.

Notations: Given integersm > 0 and n > 0, In = {1, 2, . . . , n},
1n = [1, 1, . . . , 1]T ∈ Rn, diag{d1, d2, . . . , dn} is a diagonal matrix
with diagonal elements d1, d2, . . . , dn, respectively, and |A| =
|aij|


for any A =


aij


∈ Rm×n, where |aij| = sign(aij)aij and
sign(aij) is the sign function of any real scalar aij ∈ R. We say that
A is a nonnegative matrix, denoted by A ≥ 0, if all its elements are
nonnegative. By A ≥ B, it means A− B ≥ 0. A square matrix is said
to be Hurwitz stable if all its eigenvalues have negative real parts.

2. Problem statement

We consider signed networks with n nodes. Let the ith node be
given by (see Altafini, 2013; Meng et al., 2016)

ẋi(t) =


j∈Ni

aij

xj(t) − sign(aij)xi(t)


, i ∈ In (1)

where xi(t) ∈ R is the state, aij ∈ R is the adjacency weight to
evaluate information interaction between the ith node and the jth
node, and Ni = {j : aij ≠ 0} is the label set of neighbors of the
ith node. In fact, the system (1) provides a network description
of nodes with single-integrator dynamics: ẋi(t) = ui(t), which
operates under the action of the following distributed protocol:

ui(t) =


j∈Ni

aij

xj(t) − sign(aij)xi(t)


, i ∈ In.

The interaction between nodes is conveniently described by a
signed directed graph (‘‘digraph’’ for short). A signed digraph G is
represented by a triple G = (V , E ,A), where V = {v1, v2, . . . , vn}

is a node set, E ⊆ V × V = {(vi, vj) : vi, vj ∈ V } is an edge
set such that (vj, vi) is a directed edge from vj to vi just in the case
when vj is a neighbor of vi, and A = [aij] ∈ Rn×n is an adjacency
weight matrix such that (vj, vi)∈ E ⇔ aij ≠ 0 and otherwise,
aij = 0. Clearly, the neighbors of each node vi are defined by
Nvi = {vj : (vj, vi) ∈ E }, where Ni is its label set equivalent to
Ni = {j : (vj, vi) ∈ E }. Assume that there exist no self-loops
in G , i.e., aii = 0, ∀i ∈ In and the signed digraph G is digon
sign-symmetric, i.e., aijaji ≥ 0, ∀i, j ∈ In (Altafini, 2013). For G ,
a (directed) path of length m from vi to vj is a finite sequence of
edges in the form of (vk0 , vk1), (vk1 , vk2), . . . , (vkm−1 , vkm), where
k0 = i, km = j and vk0 , vk1 , . . . , vkm are distinct nodes. If there
exists some node such that G has paths from it to every other node,
then G is said to have a spanning tree. Moreover, if there exist
paths between every distinct pair of nodes in G , then G is said to be
strongly connected. In addition, a signed digraph G is structurally
balanced if there exists a bipartition {V (1), V (2)

} of nodes, where
V (1)

∪ V (2)
= V and V (1)

∩ V (2)
= Ø, such that aij ≥ 0, ∀vi,

vj ∈ V (l) for l ∈ {1, 2} and aij ≤ 0, ∀vi ∈ V (l), ∀vj ∈ V (q)

for l ≠ q and l, q ∈ {1, 2}; and G is structurally unbalanced,
otherwise. Note that the traditional graphs associated with the
nonnegative adjacency weight matrices A ≥ 0 can be viewed as
a special case of structurally balanced signed graphs, where one of
the subcommunities V (1) and V (2) is empty (see also Altafini, 2013
for more discussions).

For two digraphs G1 = (V1, E1,A1) and G2 = (V2, E2,A2), G1
is called a subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2. Consider
any subgraph Gs = (Vs, Es,As) of G , and we extend the notion of
neighbor set Nvi for a node vi of G to define the neighbor set NGs of
the subgraph Gs as

NGs =

vj : (vj, vi) ∈ E , ∀vi ∈ Vs, ∀vj ∈ V \ Vs


where V \Vs =


vj : vj ∈ V but vj ∉ Vs


. It is not difficult to verify

NGs =


vi∈Vs

Nvi


\ Vs. Based on this definition, we separate

the nodes of networks into two groups according to the following
extended notions of leaders and followers.

Definition 1. For networks associated with a signed digraph G , a
node vi is called a leader if vi is included in some strongly connected
subgraph Gs of G that has no neighbors, i.e., NGs = Ø. The node vi
is called a follower, otherwise.

By Definition 1, we make an extension of the usual notion of
leaders. A leader generally refers to an individual node without
neighbors in the literature (see, e.g., Cao et al., 2012, Definition
2.1). Since any digraph consisting of only one node is strongly
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