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a b s t r a c t

In this paper, we propose a new moving horizon estimator for nonlinear detectable systems. Similar to a
recently proposed full information estimator, the corresponding cost function contains an additionalmax-
term compared to more standard least-squares type approaches. We show that robust global asymptotic
stability in case of bounded disturbances and convergence of the estimation error in case of vanishing
disturbances can be established. Second, we show that the same results hold for a standard least-
squares type moving horizon estimator, which so far has not been proven even in the full information
estimation case. An additional advantage of the proposed estimators is that a suitable prior weighting
appearing in the cost function can explicitly be determined offline,which is not the case in various existing
approaches.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Moving horizon estimation (MHE) is an optimization-based
state estimation technique which has received an increasing
amount of attention in recent years. At each time step, the current
state estimate is determined by solving an optimization problem
taking a number of past measurements into account. In order
to obtain a good state estimate, ideally all past measurements
from the initial time up to the current time should be considered,
resulting in a so-called full information estimator. Since this is in
general computationally intractable, inmoving horizon estimation
one instead uses only a fixed number N of past measurements. In
recent years, both theoretical properties of variousmoving horizon
estimation schemes as well as efficient computational methods for
real-time implementation have been studied, see, e.g., Rawlings
and Ji (2012), Rawlings and Mayne (2009) and Wynn, Vukov, and
Diehl (2014).

In particular, it is of interest to establish (robust) stability
properties of moving horizon estimation. To this end, in recent
years various results have been obtained for different system
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classes, advancing from more restrictive or idealistic assumptions
such as observability and no disturbances to less restrictive or
more realistic cases such as detectability or the presence of
bounded disturbances. For example, in Rao, Rawlings, and Mayne
(2003), asymptotic stability of the estimation error is established
for nonlinear observable systems without disturbances. For
nonlinear detectable systems subject to asymptotically vanishing
disturbances, robust global asymptotic stability (RGAS) and
asymptotic convergence of the estimation error are established
in Rawlings and Ji (2012) and Rawlings and Mayne (2009).
In Alessandri, Baglietto, and Battistelli (2008) and Alessandri,
Baglietto, Battistelli, and Zavala (2010), the authors propose
a moving horizon estimation scheme for which a bounded
estimation error can be guaranteed for the class of nonlinear
observable systems subject to additive bounded disturbances.
Under the assumption that a deterministic observer exists and is
known, a moving horizon estimator is designed in Liu (2013) for
nonlinear systems resulting in a bounded estimation error in case
of bounded disturbances. Finally, for the general case of nonlinear
detectable systems subject to bounded disturbances, a first step
was recently taken in Ji, Rawlings, Hu, Wynn, and Diehl (2016),
where a full information estimatorwas proposedwhich includes in
the objective function an additional max-term compared to more
standard least-squares type approaches. For this estimator, RGAS
was established in Ji et al. (2016); this result was extended tomore
general conditions on the cost function in Hu, Xie, and You (2015).
On the other hand, it could not be proven that the estimation
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error converges to zero if the disturbances asymptotically vanish1

(compare Ji et al., 2016, Section IV.C).
The results presented in this paper improve on the existing

literature in several ways. First, we propose for the first time a
moving horizon estimator for which RGAS can be shown in the
practically important case of general nonlinear detectable systems
subject to bounded disturbances. To this end, we use an additional
max-term in the objective function similar to Ji et al. (2016). Ad-
ditionally, the proposed estimator enjoys the property that the
estimation error converges to zero for asymptotically decaying
disturbances. We note that in the general case of nonlinear de-
tectable systems, one single estimator satisfying both these prop-
erties has not been known so far even in the full information
estimator case as noted above. Second, we show that the same re-
sults can be obtained when using a standard least-squares type
moving horizon estimator, i.e., without an additional max-term
in the objective function. RGAS of such an estimator in case of
bounded disturbances has been observed in practice in many pub-
lications and has thus been conjectured to hold (compare, e.g.,
Rawlings & Ji, 2012), but has not been proven so far even for a
full information estimator. Furthermore, in order to establish ro-
bust stability properties of moving horizon estimators, it is crucial
that the prior weighting in the cost function is chosen properly.
In various of the existing MHE schemes such as Rao et al. (2003)
and Rawlings andMayne (2009), the necessary assumptions on the
prior weighting are difficult to verify. In particular, it might not be
possible to determine the priorweighting a priori, i.e., offline (com-
pare Rawlings & Mayne, 2009, Assumption 4.17). An additional
advantage of the MHE scheme proposed in this paper is that the
assumption on the prior weighting can be verified a priori also in
the general nonlinear case. Finally, we note that the detectability
conditionwhichweuse is the same as the one used in the full infor-
mation estimator case (Ji et al., 2016; Rawlings & Ji, 2012), which
is slightly less restrictive compared to the one which was needed
in the moving horizon case in Rawlings and Mayne (2009).

We close this section by noting that a preliminary version of
parts of this paper has appeared in the conference proceedings
(Müller, 2016). Besides a more comprehensive exposition of the
subject, the main novelties of this paper compared to Müller
(2016) are improved robust stability results in case that the system
satisfies an exponential detectability condition, the establishment
of RGAS in the presence of bounded disturbances for a standard
least-squares type moving horizon estimator (without additional
max-term), and a more exhaustive example section.

2. Preliminaries and setup

2.1. Notation

Let I[a,b] denote the set of integers in the interval [a, b] ⊆ R,
and I≥a the set of integers greater than or equal to a. For a ∈ R, ⌈a⌉
is defined as the smallest integer greater than or equal to a. For
n ∈ I≥1, In denotes the n × n identity matrix. For a vector x =

[x1 . . . xn]T ∈ Rn and 1 ≤ p < ∞, the p-norm is defined as ∥x∥p :=

(
p

i=1 |xi|p)1/p, and ∥x∥∞ := maxi∈I[1,n] |xi|. In the following, we ab-
breviate the Euclidean norm ∥x∥2 by |x|. Bold-face symbols denote
sequences of finite or infinite length, i.e., v := {v(t1), . . . , v(t2)}
for some t1, t2 ∈ I≥0 or v := {v(0), v(1), . . .}, respectively. Let
∥v∥ := supt∈I≥0

|v(t)| denote the supremumnormof the sequence
v, ∥v∥[a,b] := supt∈I[a,b] |v(t)|, and ∥v∥≥a := supt∈I≥a |v(t)|. A

1 In Hu et al. (2015), the authors establish convergence of the estimation error
to zero, but only for the case where it is known a priori that the disturbances
asymptotically vanish and this knowledge is used in the estimator design.

function α : R≥0 → R≥0 is of class K if α is continuous, strictly
increasing, and α(0) = 0. If α is also unbounded, it is of class K∞.
A function α : I≥0 → R≥0 is of class L if α is nonincreasing and
limt→∞ α(t) = 0. A function β : R≥0 × I≥0 → R≥0 is of class KL
if β(·, t) is of class K for each fixed t ∈ I≥0, and β(r, ·) is of class
L for each fixed r ≥ 0.

2.2. Problem statement

Weconsider the state estimationproblem for nonlinear discrete
time systems of the form

x(t + 1) = f (x(t), w(t)), x(0) = x0
y(t) = h(x(t)) + v(t) (1)

with state x ∈ Rn, output y ∈ Rm, process disturbancew ∈ Rp, and
measurement noise v ∈ Rm. In the following, we assume that the
functions f : Rn

× Rp
→ Rn and h : Rn

→ Rm are continuous. The
solution to system (1) at time t for initial condition x0 and distur-
bance sequence w = {w(0), w(1), . . .} is denoted by x(t; x0,w),
or simply by x(t) if there is no ambiguity about x0 and w. Further-
more, we define hw(x) := {h(x(0; x0,w)), h(x(1; x0,w)), . . .}. The
process disturbancew andmeasurement noise v are unknown but
assumed to be bounded. This means that we consider disturbance
sequences w ∈ W(wmax) := {w : ∥w∥ ≤ wmax} and v ∈ V(vmax)
:= {v : ∥v∥ ≤ vmax} for some wmax, vmax ≥ 0. Furthermore,
the initial condition x0 of system (1) is unknown. However, we as-
sume that some prior knowledge x̄0 about the initial condition is
available, and that the error of this prior estimate is bounded, i.e.,
x̄0 ∈ X0(emax) := {x̄0 : |x0 − x̄0| ≤ emax} for some emax ≥ 0.

The objective is to find, at each time t , an estimate x̂(t) of
the current state x(t), which will be done via moving horizon
estimation (MHE) with some finite estimation horizon N ∈ I≥1.
To this end, at each time t ∈ I≥N , given the past N measurements
y(t−N), . . . , y(t−1), the following optimization problem is solved
for some constants δ1, δ2 > 0 and δ ≥ 0:

minimize
χ(t−N|t),ω(t)

JN(χ(t − N|t), ω(t))

s.t. χ(i + 1|t) = f (χ(i|t), ω(i|t)),
y(i) = h(χ(i|t)) + ν(i|t), i ∈ I[t−N,t−1] (2)

where

JN(χ(t − N|t), ω(t)) := δ1Γt−N(χ(t − N|t))

+ δ2

t−1
i=t−N

ℓ(ω(i|t), ν(i|t)) + δ maxi∈I[t−N,t−1]ℓ(ω(i|t), ν(i|t)).

(3)

In (2)–(3), ω(t) := {ω(t − N|t), . . . , ω(t − 1|t)} are the esti-
mated process disturbances for time t − N up to t − 1, estimated
at time t . Similarly, χ(i|t) and ν(i|t) denote estimated state and
measurement noise variables for time i, estimated at time t . The
stage cost ℓ penalizes the estimated process disturbances ω(i|t)
and the fitting errors ν(i|t) = y(i) − h(χ(i|t)); conditions for a
suitable choice of ℓ as well as for the prior weighting Γt−N are dis-
cussed below. For t ∈ I[0,N−1] (i.e., until the estimation horizon is
full), in (2) the optimization variables are replaced by χ(0|t) and
ω(t) := {ω(0|t), . . . , ω(t − 1|t)}, and the objective function JN in
(3) is replaced by2

JN(χ(0|t), ω(t)) := δ1Γ0(χ(0|t)) + δ2

t−1
i=0

ℓ(ω(i|t), ν(i|t))

+ δ maxi∈I[0,t−1]ℓ(ω(i|t), ν(i|t)). (4)

2 If, as later in Section 3, the constant δ1 in (3) depends onN , i.e., δ1 = δ1(N), then
δ1(t) instead of δ1 is used in (4). The same holds with respect to δ2 .
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