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a b s t r a c t

This paper presents a method to verify closed-loop properties of optimization-based controllers for
deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop
properties amenable to the proposed technique include global and local stability, performance with
respect to a given cost function (both in a deterministic and stochastic setting) and the L2 gain. The
method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g.,
a PID) plus input saturation, model predictive control with state estimation, inexact model and soft
constraints, or a general optimization-based controller where the underlying problem is solved with a
fixed number of iterations of a first-order method are all amenable to the proposed approach.

The approach is based on the observation that the control input generated by an optimization-based
controller satisfies the associated Karush–Kuhn–Tucker (KKT) conditions which, provided all data is
polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then
be analyzed using sum-of-squares (SOS) programming.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents a computational approach to analyze
closed-loop properties of optimization-based controllers for con-
strained polynomial discrete-time dynamical systems. Through-
out the paper we assume that we are given an optimization-based
controller that at each time instance generates a control input by
solving an optimization problem parametrized by a function of
the past measurements of the controlled system’s output, and we
ask about closed-loop properties of this interconnection. This set-
ting encompasses a wide range of control problems including the
control of a polynomial dynamical system by a linear controller
(e.g., a PID) with an input saturation, output feedback model pre-
dictive control with inexact model and soft constraints, or a gen-
eral optimization-based controller where the underlying problem
is solved approximately with a fixed number of iterations of a

✩ Thematerial in this paperwas partially presented at the 2013 American Control
Conference, June 17–19, 2013,Washington, DC, USA. This paper was recommended
for publication in revised form by Associate Editor Giancarlo Ferrari-Trecate under
the direction of Editor Ian R. Petersen.
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first-order1 optimizationmethod. Importantly, themethod verifies
all KKT points; hence it can be used to verify closed-loop proper-
ties of optimization-based controllerswhere the underlying, possi-
bly nonconvex, optimization problem is solvedwith a localmethod
with guaranteed convergence to a KKT point only.

The closed-loop properties possible to analyze by the approach
include: global stability and stability on a given subset, perfor-
mance with respect to a discounted infinite-horizon cost (where
we provide polynomial upper and lower bounds on the cost at-
tained by the controller over a given set of initial conditions, both in
a deterministic and a stochastic setting), the L2 gain from a given
disturbance input to a given performance output (where we pro-
vide a numerical upper bound).

Themain idea behind the presented approach is the observation
that the KKT system associated to an optimization problem
with polynomial data is a system of polynomial equalities
and inequalities. Consequently, provided that suitable constraint
qualification conditions hold (see, e.g., Peterson, 1973), the

1 By a first order optimization method we mean a method using only
function value and gradient information, e.g., the projected gradient method (see
Section 4.4).
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solution of this optimization problem satisfies a system of
polynomial equalities and inequalities. Hence, the closed-loop
evolution of a polynomial dynamical system controlled by an
optimization-based controller solving at each time step an
optimization problem with polynomial data can be seen as a
difference inclusion where the successor state lies in a set defined
by polynomial equalities and inequalities. This difference inclusion
is then analyzed using sum-of-squares (SOS) techniques (see, e.g.,
Lasserre, 2009, Parrilo, 2003 for introduction to SOSprogramming).

The approach is based on the observation of Primbs (2001)
who noticed that the KKT system of a constrained linear–quadratic
optimization problem is a set of polynomial equalities and
inequalities and used the S-procedure (see, e.g., Ghaoui, Feron, &
Balakrishnan, 1994) to derive sufficient linear matrix inequality
(LMI) conditions for a given linear MPC controller to be stabilizing.
In this work we significantly extend the approach in terms of
both the range of closed-loop properties analyzed and the range of
practical problems amenable to the method. Indeed, our approach
is applicable to general polynomial dynamical systems, both
deterministic and stochastic, and allows the analysis not only of
stability but also of various performancemeasures. The approach is
not only applicable to an MPC controller with linear dynamics and
a quadratic cost function as in Primbs (2001) but also to a general
optimization-based controller, where the optimization problem
may not be solved exactly, encompassing all the above-mentioned
control problems.

This work is a continuation of Korda and Jones (2013) where
the approach was used to analyze the stability of optimization-
based controllers where the optimization problem is solved
approximately by a fixed number of iterations of a first order
method. The results of Korda and Jones (2013) are summarized
in Section 4.4 of this paper as one of the examples that fit in the
presented framework.

The paper is organized as follows. Section 2 gives a brief
introduction to SOS programming. Section 3 states the problem
to be solved. Section 4 presents a number of examples amenable
to the proposed method. Section 5 presents the main verification
results: Section 5.1 on global stability, Section 5.2 on stability
on a given subset, Section 5.3 on performance analysis in a
deterministic setting, Section 5.4 on performance analysis in a
stochastic setting and Section 5.5 on the analysis of the L2 gain in
a robust setting. Computational aspects are discussed in Section 6.
Numerical examples are in Section 7 and some proofs are collected
in the Appendix.

2. Sum-of-squares programming

Throughout the paper we will rely on sum-of-squares (SOS)
programming, which allows us to optimize, in a convex way, over
polynomials with nonnegativity constraints imposed over a set de-
fined by polynomial equalities and inequalities (see, e.g., Lasserre,
2009, Parrilo, 2003 for more details on SOS programming). In par-
ticular we will often encounter optimization problems with con-
straints of the form

LV (x) ≥ 0 ∀ x ∈ K, (1)

where V : Rn
→ R is a polynomial, L a linear operator mapping

polynomials to polynomials (e.g., a simple addition or a composi-
tion with a fixed function) and

K = {x ∈ Rn
| g(x) ≥ 0, h(x) = 0},

where the functions g : Rn
→ Rng and h : Rn

→ Rnh are vec-
tor polynomials (i.e., each component is a polynomial). A sufficient
condition for (1) to be satisfied is

LV = σ0 +

ng
i=1

σigi +
nh
i=1

pihi, (2)

where σ0 and σi, i = 1, . . . , ng , are SOS polynomials and pi, i =

1, . . . , nh, are arbitrary polynomials. A polynomial σ is SOS if it can
be written as
σ(x) = β(x)⊤Qβ(x), Q ≽ 0, (3)
where β(x) is a vector of polynomials and Q ≽ 0 signifies that
Q is a positive semidefinite matrix. The condition (3) trivially im-
plies that σ(x) ≥ 0 for all x ∈ Rn. Importantly, the condition
(3) translates to a set of linear constraints and a positive semidef-
initeness constraint and therefore is equivalent to a semidefinite
programming (SDP) feasibility problem. In addition, the constraint
(2) is affine in the coefficients of V , σ and p; therefore (2) also
translates to an SDP feasibility problem and, crucially, it is possible
to optimize over the coefficients of V (as long as they are affinely
parametrized in the decision variables) subject to the constraint
(2) using semidefinite programming.

In the rest of the paper when we say that a constraint of the
form (1) is replaced by sufficient SOS constraints, then we mean
that (1) is replaced with (2).

In additionwewill often encounter optimization problemswith
objective functions of the form

min/max

X
V (x) dx, (4)

where V is a polynomial and X a simple set (e.g., a box). The
objective function is linear in the coefficients of the polynomials
V . Indeed, expressing V (x) =

nβ
i=1 viβi(x), where (βi)

nβ
i=1 are

fixed polynomial basis functions and (vi)
nβ
i=1 the corresponding

coefficients, we have
X
V (x) dx =

nβ
i=1

vi


X
βi(x) dx =

nβ
i=1

vimi,

where the moments mi :=

X βi(x) dx can be precomputed (in a

closed form for simple setsX).We see that the objective (4) is linear
in the coefficients (vi)

nβ
i=1 and hence optimization problems with

objective (4) subject to the constraint (1) enforced via the sufficient
constraint (2) translate to an SDP.

3. Problem statement

We consider the nonlinear discrete-time dynamical system

x+
= fx(x, u), (5a)

y = fy(x), (5b)

where x ∈ Rnx is the state, u ∈ Rnu the control input, y ∈ Rny

the output, x+
∈ Rnx the successor state, fx : Rnx × Rnu → Rnx

a transition mapping and fy : Rnx → Rny an output mapping.
We assume that each component of fx and fy is a multivariate
polynomial in (x, u) and x, respectively.

We assume that the system is controlled by a given set-valued
controller
u ∈ κ(Ks), (6)
where κ : Rnθ → Rnu is polynomial and

Ks := {θ ∈ Rnθ | ∃λ ∈ Rnλ s.t. g(s, θ, λ) ≥ 0, h(s, θ, λ) = 0}, (7)
where each component of the vector-valued functions g : Rns ×

Rnθ × Rnλ → Rng and h : Rns × Rnθ × Rnλ → Rnh is a polynomial
in the variables (s, θ, λ). The set Ks is parametrized by the output
of a dynamical system

z+
= fz(z, y), (8a)

s = fs(z, y), (8b)

where fz : Rnz × Rny → Rnz and fs : Rnz × Rny → Rns are poly-
nomials. The problem setup is depicted in Fig. 1. In the rest of the
paperwedevelop amethod to analyze the closed-loop stability and
performance of this interconnection. Before doing that we present
several examples which fall into the presented framework.
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