
Automatica 78 (2017) 123–134

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Composability and controllability of structural linear time-invariant
systems: Distributed verification✩

J. Frederico Carvalho e,1, Sérgio Pequito a,b,1, A. Pedro Aguiar c, Soummya Kar a,
Karl H. Johansson d

a Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
b Institute for Systems and Robotics, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
c Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
d ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
e Center for Autonomous Systems CAS/RPL, KTH Royal Institute of Technology, Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 18 June 2015
Received in revised form
16 April 2016
Accepted 21 November 2016

Keywords:
Control system analysis
Controllability
Structural properties
Graph theory
Combinatorial mathematics

a b s t r a c t

Motivated by the development and deployment of large-scale dynamical systems, often comprised of
geographically distributed smaller subsystems, we address the problem of verifying their controllability
in a distributed manner. Specifically, we study controllability in the structural system theoretic sense,
structural controllability, in which rather than focusing on a specific numerical system realization, we
provide guarantees for equivalence classes of linear time-invariant systems on the basis of their structural
sparsity patterns, i.e., the location of zero/nonzero entries in the plant matrices. Towards this goal,
we first provide several necessary and/or sufficient conditions that ensure that the overall system is
structurally controllable on the basis of the subsystems’ structural pattern and their interconnections.
The proposed verification criteria are shown to be efficiently implementable (i.e., with polynomial time-
complexity in the number of the state variables and inputs) in two important subclasses of interconnected
dynamical systems: similar (where every subsystem has the same structure) and serial (where every
subsystem outputs to at most one other subsystem). Secondly, we provide an iterative distributed
algorithm to verify structural controllability for general interconnected dynamical system, i.e., it is based
on communication among (physically) interconnected subsystems, and requires only local model and
interconnection knowledge at each subsystem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years we have witnessed an explosion in the use
of large-scale dynamical systems, notably, those with a modular
structure (Davison, 1977; Davison&Özgüner, 1983; Özgüner &He-
mani, 1985), such as content delivery networks, social networks,
robot swarms, and smart grids. Such systems, often geographi-
cally distributed, are comprised of smaller subsystems (which we
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may refer to as agents), and a typical concern is ensuring that the
system, as a whole, performs as intended. More than often, when
analyzing these interconnected dynamical systems, which in this
paper we consider to consist of continuous linear-time invariant
(LTI) subsystems,wedonot know the exact parameters of the plant
matrices. Therefore, we focus on the zero/nonzero pattern of the
system’s plant, which we refer to as sparsity pattern, and we focus
on structural counterpart of controllability, i.e., structural control-
lability (Dion, Commault, & der Woude, 2003).

It is worthwhile noting that these agents may be homogeneous
or heterogeneous, from its structure point of view.When the agents
are homogeneous, their plants and connections (when used) have
the same sparsity pattern and the system is referred to as a similar
system. Otherwise, the agents are heterogeneous and two possible
scenarios are conceivable: (i) an agent may receive information
from (possibly several) other agents but it only transmits to
one other agent, the overall system is referred to as serial, and
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commonly arises in peer-to-peer communication schemes; and
(ii) the communications between agents can be arbitrary, which
commonly arise in broadcast communication setups. All the above
subclasses of interconnected dynamical systems are of interest and
explored in detail in this paper. More precisely, we provide several
necessary and/or sufficient conditions to ensure key properties of
the system, which can be verified resorting to efficient (i.e., with
polynomial time complexity in the number of state variables)
algorithms.

In some applications, the problem of composability is particu-
larly relevant. Consider, for example, a swarm of robots possessing
similar structure where the communication topology may change
over time, or where robots may join or leave the swarm over time.
Then, the existence of necessary and/or sufficient conditions on the
structure and interconnection between these agents contribute to
controllability-by-design schemes, i.e., we ensure that by inserting
an agent into the interconnected dynamical system, we obtain a
controllable dynamical system. Consequently, we can specify with
which agents an agent should interact with such that those condi-
tions hold.

A swarm of robots can also be composed by a variety of
heterogeneous agents in which case controllability-by-design is
also important, yet due to constraints on the communication
range, the interaction between agents is merely local, even if
some additional information is known. Therefore, in the context
of serial systems we can equip each subsystem with the capability
of inferring if the entire system is structurally controllable, i.e., we
provide distributed algorithms that rely only on the interaction
between a subsystem and its neighbors, where information about
their structure may be shared. In particular, if we equip the robots
in the swarm with actuation capabilities that can be activated
when the interconnected dynamical system is not structurally
controllable, we can render this interconnected dynamical system
structurally controllable.

Nonetheless, imposing a priori knowledge of the structure of
the interconnections in the system (for instance, whether it is a
serial system) can be restrictive, so distributed algorithms to verify
structural controllability of general interconnected dynamical
systems are in need. Hereafter, we provide such an algorithm: It
requires the interaction between a subsystem and its neighbors,
but it does not require to share the structure of the subsystems
involved. Instead, it requires only partial information about
its structure, which leads to a certain level of privacy of the
intervenients in the communication. The proposed scheme is also
particularly suitable to other applications such as the smart grid
of the future, that consists of entities described by subsystems
deployed over large distances; in particular, notice that in these
cases, the different entitiesmay not bewilling to share information
about their structure due to security or privacy reasons.
Related Work: Structural controllability was introduced by Lin
(1974) in the context of single-input single-output (SISO) systems,
and extended to multi-input multi-output (MIMO) systems by
Shields and Pearson (1976). A recent survey of the results in
structural systems theory, where several necessary and sufficient
conditions are presented, can be found in Dion et al. (2003).

In this paper, we focus on the composability aspects that en-
sure structural controllability. In other words, we are interested
in understanding how the connection between different dynam-
ical subsystems enables or jeopardizes the structural controllabil-
ity of the overall system. The presented problem statement fits the
general framework presented in Anderson and Hong (1982). Nev-
ertheless, the verification procedures proposed in Anderson and
Hong (1982) based on matrix nets lead to a computational burden
which increases exponentially with the dimension of the problem.
Alternatively, in Davison (1977) an efficient method is proposed

that takes into account the whole system instead of local prop-
erties (i.e., the components of the system and their interconnec-
tions), however this method does not apply to an arbitrary system.
More precisely, it is assumed that when connected, the state space
digraph (to be defined later) is spanned by a disjoint union of cy-
cles, which is called a rank constraint. In contrast, in Li, Xi, and
Zhang (1996) and Rech and Perret (1991), the authors have pre-
sented results on the structural controllability of interconnected
dynamical systems, by focusing on the cascade interconnection of
system structures that ensure the structural controllability of the
interconnected dynamical system. Nevertheless, these structures
are not unique, and the interconnection of these is established as-
suming such connectible structures are given, therefore, no prac-
tical criteria to compute the structures and verify the results are
given. More recently, in Blackhall and Hill (2010) similar results
were obtained by exploring which variables may belong to a struc-
ture and referred to as controllable state variable. Thus, similarly to
Li et al. (1996) and Rech and Perret (1991), the results depend on
the identified structures, but no method to systematically identify
these structures is provided. In Yang and Zhang (1995) the study is
conducted assuming that all the subsystems except a central sub-
system, which is allowed to communicate with every other sub-
system, have the same dynamic structure, and the interconnection
between the several subsystems also has the same structure (even
though they may not be used). This, study considers the impact of
local interactions into the system structural controllability, which
results can be obtained with the solution proposed hereafter.

In Pequito, Kar, and Aguiar (2016a), we studied the problem
of determining the sparsest input matrix to ensure structural
controllability in a centralized fashion. Furthermore, polynomial
algorithms with computational complexity O(n3) were provided
to both problems, where n is the number of state variables. In
Pequito, Kar, and Aguiar (2015), we studied the setting where
the selection of inputs is constrained to a given collection, and
shown to be NP-hard. Finally, in Pequito, Kar, and Aguiar (2016b),
the problem in Pequito et al. (2016a) was further extended to
determining the inputmatrix incurring in theminimum cost when
the state variables actuated incur in different costs while ensuring
structural controllability. Furthermore, procedures with O(nω)
computational complexity were provided, where ω < 2.373
is the lowest known exponent associated with the complexity
of multiplying two n × n matrices. All these contrasts with the
problem addressed in the current paper in the sense that we aim to
verify structural controllability properties in a distributed fashion.
In particular, it requires identifying specific network conditions on
thenetwork structure underwhichwe canuse efficient algorithms,
i.e., polynomial in the dimension of the state space, or provide
distributed algorithms suitable to address the proposed problem.

On the other hand, composability aspects regarding control-
lability have been heavily studied by several authors, see for in-
stance, Chen and Desoer (1967), Davison and Wang (1975), Wang
and Davison (1973), Wolovich and Hwang (1974), Yonemura and
Ito (1972) and Zhou (2015). Briefly, all these studies resort to the
well known Popov–Belevitch–Hautus (PBH) eigenvalue controlla-
bility criterion for LTI systems (Hespanha, 2009). We notice that
this criterion requires the knowledge of the overall system to in-
fer its controllability. The reason is closely related with the loss
of degrees of freedom imposed by interconnected dynamical sys-
tems, as well as conservation laws in general, that reflects in the
decrease of the rank of the system’s dynamics matrix when com-
pared with the sum of the rank of the dynamics matrices of each
subsystem. Consequently, even if all subsystems are controllable,
their interconnection may not be. Notwithstanding, the same does
not happenwhen dealingwith structural systems, where if all sub-
systems are structurally controllable, then the overall system is
structurally controllable. So, while not guaranteeing that a system
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