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a b s t r a c t

This paper presents an alternative, characteristic function based approach for the Bayesian design of
estimators for dynamic linear systems and linear detection problems. For a measurement update, the
a posteriori characteristic function of the unnormalized conditional probability density function (ucpdf)
of the state given the measurement history is obtained as a convolution of the a priori characteristic
function of the ucpdf with the characteristic function of the measurement noise. It is shown that this
convolution holds for a general measurement structure. Time propagation involves the product of the
updated characteristic function of the ucpdf and the characteristic function of the process noise. Some
estimation problems are found to be naturally tractable using only characteristic functions, such as the
multivariable linear system with additive Cauchy measurement and process noise. It is shown that even
the derivation of the Kalman filter algorithm has advantages when formulated using the characteristic
function approach. Finally, in some instances the estimation problem can only be formulated in terms
of characteristic functions. This is illustrated by a one-update scalar example for symmetric-α-stable
distributions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Normally, in designing dynamic estimators, the problem is
formulated in terms of probability density functions (pdf’s) of the
associated initial conditions and the measurement and process
noises. The estimation problem is solved by determining the
update and propagation of the conditional pdf of the state given the
measurement history. For linear systems with additive Gaussian
noise, this is the standard approach (Speyer & Chung, 2008). For
scalar-state linear dynamic systems with additive Cauchy noise,
the conditional pdf was also generated (Idan & Speyer, 2010).
Sometimes using characteristic functions presents an attractive
alternative (Idan & Speyer, 2012). In fact, when deriving the
multivariate estimator for linear systems with Cauchy noises only
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the characteristic function approach led to a recursive, closed-form
analytical solution (Idan & Speyer, 2014).

For a measurement update, the a posteriori characteristic
function of the unnormalized conditional probability density
function (ucpdf) of the state given the measurement history is
obtained as a convolution of the a priori characteristic function
of the ucpdf with the characteristic function of the measurement
noise. In Idan and Speyer (2014), only the scalar measurement
was considered. It is shown here that this convolution holds
for a general measurement structure. Propagation involves the
product of the updated characteristic function of the ucpdf and
the characteristic function of the process noise and was derived
in Idan and Speyer (2014). The characteristic function approach
is advocated in this paper and may provide solutions for cases
in which determining the associated conditional pdfs can be
intractable (Idan & Speyer, 2014).

The general problem of state estimation for the multi-input-
multi-output linear system, where the initial conditions and ad-
ditive uncertainties have known characteristic functions, is pre-
sented in Section 2. In Section 3 we derive the update and propa-
gation equations for the characteristic function of the unnormal-
ized conditional probability density function of the state given
the measurement history, followed by the expressions used to
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determine theminimum conditional variance estimate and the as-
sociated estimation error variance. In particular, while the scalar
linearmeasurement casewas addressed in Idan and Speyer (2014),
this result is extended to a state coefficient matrix in the measure-
ment of any dimension and rank. In Section 4 two examples are
given. In Section 4.1 the conditionalmean and conditional variance
are determined for a scalar state given a scalarmeasurementwhere
the state and the measurement noise are in the class of symmet-
ric α-stable (Sα-S) distributions (Samorodnitsky & Taqqu, 1994).
Then, the derivation of the Kalman filter algorithm using the char-
acteristic function approach is presented in Section 4.2. This ap-
proach allows for singularities in certain covariance matrices, nor-
mally assumed full rank in the standard derivation. Some conclud-
ing remarks are drawn Section 5.

2. Problem formulation

We consider the multi-input-multi-output linear system

xk+1 = Φxk + Γ wk, zk = Hxk + vk, (1)

with state vector xk ∈ Rn, vector measurement zk ∈ Rm, and
known matrices Φ ∈ Rn×n, Γ ∈ Rn×p, and H ∈ Rm×n. The
independent vector-valued process noise sequence wk ∈ Rp is
assumed to have a known characteristic function φW (νw) where
νw ∈ Rp. Similarly, the independent measurement noise sequence
vk ∈ Rm is specified by its characteristic function φV (νv) with
νv ∈ Rm. The initial conditions at k = 1 are also assumed to
be random variables with a known characteristic function φX1 (ν)
where ν ∈ Rn. In this work, the random variables wk, vk and x1 are
assumed to be independent.

The goal is to compute the minimum conditional vari-
ance estimate of xk given the measurement history or yk =
z1 z2 · · · zk


.

3. Measurement update and time propagation equations

In the proposed design method, the sequential estimator is
derived by propagating the characteristic function of the un-
normalized conditional pdf of the state given the measurement
history, that is the joint pdf of the state and observations history.
In this section we derive those update and propagation equations,
followed by the expressions used to determine the minimum
conditional variance estimate and the associated estimation error
variance.

3.1. Measurement update

Consider f̄Xk|Yk−1 (xk|yk−1), the un-normalized conditional pdf of
the state at time k given the measurement history up to time step
k − 1, defined as

f̄Xk|Yk−1 (xk|yk−1) = fXk|Yk−1 (xk|yk−1) fYk−1 (yk−1) . (2)

Here, fYk−1 (yk−1) is the pdf of the past measurement sequence,
which, for a given measurement history, is a constant computed
by integrating f̄Xk|Yk−1 (xk|yk−1) with respect to xk. The conditional
pdf is not normalized for computation efficiency and simplicity
by avoiding the above mentioned integration. We assume that the
characteristic function of the un-normalized pdf, i.e.

φ̄Xk|Yk−1 (ν) =


xk
f̄Xk|Yk−1 (xk|yk−1) ejν

T xkdxk, (3)

is known. In (3), the notation

xk
implies n integrals with respect to

the components of the vector xk over the range (−∞, ∞). A similar
notation will be used throughout the paper, where the number of
integrals is implied by the dimension of the indicated integration

vector. The normalization factor in (2) can be easily computed from
the characteristic function of the un-normalized pdf, i.e.

fYk−1 (yk−1) = φ̄Xk|Yk−1 (0) . (4)

It should be stressed that in the proposed approach only the
characteristic function of the un-normalized pdf is determined,
without specifically computing the pdfs of the variables.

Assuming that φ̄Xk|Yk−1 (ν) is known, the measurement update
implies processing the next measurement

zk = Hxk + vk (5)

to determine φ̄Xk|Yk−1,Zk (ν) = φ̄Xk|Yk (ν). Using Bayes’ theorem it
can be easily verified that

f̄Xk|Yk (xk|yk) = fXk|Yk (xk|yk) fYk (yk)

= f̄Xk|Yk−1 (xk|yk−1) fZk|Xk,Yk−1 (zk|xk, yk−1)

= f̄Xk|Yk−1 (xk|yk−1) fZk|Xk (zk|xk)

= f̄Xk|Yk−1 (xk|yk−1) fV (zk − Hxk) , (6)

where the last two equalities result from the fact that vk is
an independent sequence uncorrelated with wk and xk−1. The
characteristic function of f̄Xk|Yk (xk|yk) is given by

φ̄Xk|Yk (ν)

=


xk
f̄Xk|Yk−1 (xk|yk−1) fV (zk − Hxk) ejν

T xkdxk. (7)

The above resembles a Fourier transform of a product of the
two functions, i.e., of f̄Xk|Yk−1 (xk|yk−1) and fV (zk − Hxk). Using
the dual convolution property, this integral can be solved by a
convolution in the ν domain between the characteristic function
of f̄Xk|Yk−1 (xk|yk−1), i.e., the currently known φ̄Xk|Yk−1 (ν) of (3), and
the characteristic function of fV (zk − Hxk), which we denote by
φ̂Vk (ν). It is given by

φ̂Vk (ν) =


xk
fV (zk − Hxk) ejν

T xkdxk. (8)

Hence, φ̄X |Z (ν) can be computed by the convolution integral

φ̄Xk|Yk (ν) =
1

(2π)n


η

φ̄Xk|Yk−1 (ν − η) φ̂V (η) dη, (9)

where η ∈ Rn. φ̂V (ν) is now determined for several cases. The
scalar case, i.e., rankH = m = 1, was addressed in Idan and Speyer
(2014). Here we extend this result to H of any dimension and rank
while addressing four different cases.

3.1.1. Full-rank H cases
First we address the cases that H is full rank, i.e., rankH =

min(n,m), with different number of measurements m relative to
the number of states n.

Case 1:m = n
This is the simplest case, where the number of measurements

equals the number of states and H ∈ Rm×m is full rank, i.e., invert-
ible. To address the integral (8), we introduce the following change
of variables

µ = zk − Hxk, (10)

that yield the following relations:

xk = H−1zk − H−1µ → dxk =
dµ
|H|

. (11)
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