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a b s t r a c t

We consider the problem of selecting an optimal set of sensors to estimate the states of linear dynamical
systems. Specifically, the goal is to choose (at design-time) a subset of sensors (satisfying certain budget
constraints) from a given set in order to minimize the trace of the steady state a priori or a posteriori error
covariance produced by a Kalman filter. We show that the a priori and a posteriori error covariance-based
sensor selection problems are both NP-hard, even under the additional assumption that the system is
stable. We then provide bounds on the worst-case performance of sensor selection algorithms based on
the systemdynamics, and show that greedy algorithms are optimal for a certain class of systems.However,
as a negative result, we show that certain typical objective functions are not submodular or supermodular
in general. While this makes it difficult to evaluate the performance of greedy algorithms for sensor
selection (outside of certain special cases), we show via simulations that these greedy algorithms perform
well in practice.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the key problems in control system design is to select an
appropriate set of actuators or sensors (either at design-time or at
run-time) in order to achieve certain performance objectives (Van
De Wal & De Jager, 2001). For the objective of estimating the state
of a given linear Gauss–Markov system, there has been a growing
literature in the past few years that studies how to dynamically
select sensors at run-time to minimize certain metrics of the error
covariance of the corresponding Kalman filter. This is known as
the sensor scheduling problem, due to the fact that a different set
of sensors can be chosen at each time-step (e.g., see Gupta, Chung,
Hassibi, & Murray, 2006; Jawaid & Smith, 2015).

The design-time sensor selection problem (where the set of
chosen sensors is not allowed to change over time) has been
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studied in various forms, including cases where the objective
is to guarantee a certain structural property of the system
(Pequito, Kar, & Aguiar, 2013), to optimize energy or information
theoretic metrics (Krause, Singh, & Guestrin, 2008; Summers,
Cortesi, & Lygeros, 2016), or to compute the optimal sensing
matrix under a norm constraint (Belabbas, 2016).1 Various sensor
selection heuristics have also been proposed for estimation of
static random variables (e.g., see Chepuri & Leus, 2015; Joshi &
Boyd, 2009; Nordio, Tarable, Dabbene, & Tempo, 2015); however,
the corresponding results do not directly translate to the case of
estimating the (vector) state of dynamical systems.

In Dhingra, Jovanović, and Luo (2014), the authors studied
the design-time actuator/sensor selection problem for continuous-
time linear dynamical systems using the sparsity-promoting
framework from Lin, Fardad, and Jovanovic (2013) and Polyak et al.
(2013). For the sensor selection problem, the objective is to design
a Kalman gain matrix to minimize the resulting H2 norm from
the noise to the predicted estimation error. Sparsity is achieved
by adding a penalty function for non-zero columns of the gain

1 There have also been various recent studies of the dual design-time actuator
placement problem (e.g., see Polyak, Khlebnikov, & Shcherbakov, 2013; Tzoumas,
Rahimian, Pappas, & Jadbabaie, 2015).
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matrix. In contrast to the formulation in Dhingra et al. (2014), in
this paper, we directly focus onminimizing functions of the steady
state error covariances of discrete-time Kalman filters, and impose
a hard constraint on the set of sensors to be chosen.

In Tzoumas, Jadbabaie, and Pappas (2016, in press), the authors
studied the design-time sensor selection problem for discrete-
time linear time-varying systems over a finite horizon. They
assumed that each sensor directly measures one component of
the state vector, and the objective is either to minimize the
estimation error with a cardinality constraint or to minimize the
number of chosen sensors while guaranteeing a certain level of
performance. Different from the formulation in Tzoumas et al.
(2016, in press), we consider general measurement matrices and
focus on minimizing the steady state estimation error of the
Kalman filter.

In Yang et al. (2015), the authors considered the same prob-
lem as the one we considered here, namely the design-time sen-
sor selection problem for Kalman filtering in discrete-time linear
dynamical systems with hard constraints. They showed that the
sensor selection problem can be expressed as a semidefinite pro-
gram (SDP). However, the results in Yang et al. (2015) can only be
applied to systems where the sensor noise terms are uncorrelated,
and no theoretical guarantees were provided on the performance
of the proposed heuristics.

In this paper, we consider the design-time sensor selection
problem for optimal filtering of discrete-time linear dynamical
systems. Specifically, we study the problem of choosing a set of
sensors (under certain constraints) to optimize either the a priori or
the a posteriori error covariance of the correspondingKalman filter;
we will refer to these problems as the priori and posteriori Kalman
filtering sensor selection (KFSS)problems, respectively. Note that the
priori KFSS problem is applicable for settings where a prediction of
system states is needed and the posteriori KFSS problem is suitable
for applications where the estimation can be conducted after
receiving up-to-date measurements (Anderson & Moore, 1979).

Our contributions are threefold. First, we show that it is NP-
hard to find the optimal solution of cost-constrained priori and
posteriori KFSS problems, even under the assumption that the
system is stable. It is often claimed in the literature that sensor
selection problems are intractable (Huber, 2012; Joshi & Boyd,
2009); however, except for certain problems with utility or energy
based cost functions (e.g., see Bian, Kempe, & Govindan, 2006;
Tzoumas et al., 2015), to the best of our knowledge, there is still no
explicit characterization of the complexity of the optimal-filtering
based sensor selection problems considered in this paper.

Our second contribution is to provide insights into what factors
of the system affect the performance of sensor selection algorithms
by using the concept of the sensor informationmatrix (Huber, 2012).
For the priori KFSS problem, we show that when the system is
stable, theworst-case performance can be bounded by a parameter
that depends only on the system dynamics matrix, and that the
performance of a sensor selection algorithm cannot be arbitrarily
bad if the systemmatrix is well conditioned, even under very large
noise. For the posteriori KFSS problem, we show that for a given
system, the worst-case performance of any selection of sensors
can be upper-bounded in terms of the eigenvalues of the system
noise covariancematrix and the corresponding sensor information
matrix.

Since it is intractable to find the optimal selection of sensors
in general, a reasonable tradeoff is to design appropriate approx-
imation algorithms. In Jawaid and Smith (2015), the authors con-
sidered various cost functions for the (run-time) sensor scheduling
problem. They showed that one of these considered cost functions
is submodular while the others are not; for the submodular cost
function, a certain greedy algorithm can be applied to obtain guar-
anteed performance. Greedy algorithms have also drawn much

attention for other forms of sensor selection problems, e.g., see
Krause et al. (2008), Shamaiah, Banerjee, and Vikalo (2010), Sum-
mers et al. (2016) and Tzoumas et al. (2016). Thus, our third
contribution is the study of greedy algorithms for the priori and
posteriori KFSS problems.We first show that greedy algorithms are
optimal (with respect to the corresponding KFSS problems) for a
certain class of systems. However, for general systems, as a nega-
tive result, we show that the cost functions of both the priori and
posteriori KFSS problems (and the other cost functions studied in
Jawaid & Smith, 2015) do not necessarily have certain modularity
properties. This precludes the direct application of classical results
from the theory of combinatorial optimization and implies that the
underlying structures of the KFSS problems are different from the
other types of sensor selection problems. Nevertheless, we show
via simulations that greedy algorithms perform well in practice.
Moreover, compared to the algorithms in Yang et al. (2015), the
greedy algorithms provided in this paper can be applied to a more
general class of systems (where the sensor noises are correlated),
aremore efficient and (in simulations) provide comparable perfor-
mance. Preliminary versions of these results were presented in the
conference paper Zhang, Ayoub, and Sundaram (2015).

The rest of the paper is organized as follows. In Section 2,we for-
mulate the (design-time) sensor selection problems. In Section 3,
we analyze the complexity of the priori and posteriori KFSS prob-
lems. In Section 4, we provide worst-case guarantees on the per-
formance of sensor selection algorithms. In Section 5, we propose
and study two greedy algorithms for sensor selection, and illus-
trate their performance and complexity in Section 6. We conclude
in Section 7.

1.1. Notation and terminology

The set of integers, real numbers and complex numbers are
denoted asZ, R andC, respectively. For a squarematrixM ∈ Rn×n,
let MT , trace(M), det(M), {λi(M)} and {σi(M)} be its transpose,
trace, determinant, set of eigenvalues and set of singular values,
respectively. The set of eigenvalues {λi(M)} ofM are ordered with
nondecreasing magnitude (i.e., |λ1(M)| ≥ · · · ≥ |λn(M)|); the
same order applies to the set of singular values {σi(M)}. A positive
semi-definite matrix M is denoted by M ≽ 0 and M ≽ N if
M − N ≽ 0; the set of n by n positive semi-definite (resp. positive
definite)matrices is denoted by Sn

+
(resp. Sn

++
). The identitymatrix

with dimension n is denoted by In×n. For a vector v, let diag(v) be
the diagonal matrix with diagonal entries being the elements of
v; for a set of matrices {Mi}

q
i=1, let diag(M1, . . . ,Mq) be the block

diagonal matrix with the ith diagonal block beingMi. For a random
variable w, denote E[w] as its expectation.

2. Problem formulation

Consider the discrete-time linear system

x[k+ 1] = Ax[k] + w[k], (1)

where x[k] ∈ Rn is the system state, w[k] ∈ Rn is a zero-mean
white Gaussian noise process with E


w[k](w[k])T


= W for all

k ∈ N, and A ∈ Rn×n is the system dynamics matrix. We assume
throughout that the pair (A,W

1
2 ) is stabilizable.

The set of sensors to be installed on the systemmust come from
a given set Q consisting of q sensors. Each sensor i ∈ Q provides a
measurement of the form

yi[k] = Cix[k] + vi[k], (2)

where Ci ∈ Rsi×n is the state measurement matrix for that sensor,
and vi[k] ∈ Rsi is a zero-mean white Gaussian noise process. For
convenience, we define y[k] ,


(y1[k])T · · · (yq[k])T

T
, C ,
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