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a b s t r a c t

Recently, barrier certificates have been introduced to prove the safety of continuous or hybrid dynamical
systems. A barrier certificate needs to exhibit some barrier function, which partitions the state space
in two subsets: the safe subset in which the state can be proved to remain and the complementary
subset containing some unsafe region. This approach does not require any reachability analysis, but
needs the computation of a valid barrier function, which is difficult when considering general nonlinear
systems and barriers. This paper presents a new approach for the construction of barrier functions
for nonlinear dynamical systems. The proposed technique searches for the parameters of a parametric
barrier function using interval analysis. Complex dynamicswith boundedperturbations can be considered
without needing any relaxation of the constraints to be satisfied by the barrier function.

© 2016 Published by Elsevier Ltd.

1. Introduction

Formal verification aims at proving that a certain behavior or
property is fulfilled by a system. Verifying, e.g., the safety property
for a system consists in ensuring that it will never reach a dan-
gerous or an unwanted configuration. Safety verification is usually
translated into a reachability analysis problem (Asarin, Bournez,
Dang, & Maler, 2000; Chutinan & Krogh, 1999; Frehse et al., 2011;
Sun, Ge, & Lee, 2002; Tiwari, 2003). Starting from an initial region,
a system must not reach some unsafe region. Different methods
have been considered to address this problem. One may explicitly
compute the reachable region and determine whether the system
reaches the unsafe region (Gulwani & Tiwari, 2008). An alternative
idea is to compute an invariant for the system, i.e., a region inwhich
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the system is guaranteed to stay (Chutinan &Krogh, 1999). This pa-
per considers a class of invariants determined by barrier functions.

A barrier function (Prajna, 2006; Prajna & Jadbabaie, 2004) par-
titions the state space and isolates an unsafe region from the part
of the state space containing the initial region. In Prajna and Jad-
babaie (2004), polynomial barriers are considered for polynomial
systems and semi-definite programming is used to find satisfying
barrier functions. Our aim is to extend the class of considered prob-
lems to non-polynomial systems and to non-polynomial barriers.
This paper focuses on continuous-time systems.

The design of a barrier function is formulated as a quantified
constraints satisfaction problem (QCSP) (Benhamou & Goualard,
2000; Ratschan, 2006). Interval analysis is then used to find the
parameters of a barrier function such that the QCSP is satisfied.
More specifically, the algorithm presented in Jaulin and Walter
(1996) for robust controller design is adapted and supplemented
with some of the pruning schemes found in Chabert and Jaulin
(2009) to solve the QCSP associated to the barrier function design.

The paper is organized as follows. Section 2 introduces some
related work. Section 3 defines the notion of barrier functions and
formulates the design of barrier functions as a QCSP. Section 4
presents the framework developed to solve the QCSP. Design
examples are presented in Section 5. Section 6 concludes thework.

In what follows, small italic letters x represent real variables
while real vectors x are in bold. Intervals [x] and interval vectors
(boxes) [x] are represented between brackets. We denote by IR
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the set of closed intervals over R, the set of real numbers. Data
structures or sets S are in upper-case calligraphic. The derivative
of a function xwith respect to time t is denoted by ẋ.

2. Related work

The verification of the safety properties for dynamical systems
has been an active field of research in the last years. This related
work review focuses on methods involving the computation of
invariants for dynamical systems. Alternative methods based on
the computation of reachable sets are described in Chen, Abrahám,
and Sankaranarayanan (2012), Frehse et al. (2011) and in the
references therein.

An invariant is a part of the state space in which the state of
a dynamical system can be proved to remain. Invariants are very
useful to prove the safety of dynamical systems. If an invariant does
not contain any unsafe regions, then the dynamical system is safe.
Methods to characterize invariants have been intensively studied
for linear and polynomial dynamics but significant work has still
to be done for non-linear dynamical systems.

Using ideas from the community interested in hybrid systems,
a set of methods has been defined to compute invariants for
various classes of systems, for example for linear or affine systems
(Tiwari, 2003) or for polynomial systems (Gulwani & Tiwari,
2008; Kapinski, Deshmukh, Sankaranarayanan, & Arechiga, 2014;
Sankaranarayanan, Sipma, & Manna, 2004; Yang, Lin, &Wu, 2015).
These methods introduce a candidate parametric function, which
parameter vector has to be adjusted to define an invariant of
the considered dynamical system. Various techniques are then
employed to determine satisfying parameter vectors. For example,
in Sankaranarayanan et al. (2004), the theory of ideals over
polynomials and Gröbner bases are used to define constraints to
be satisfied by the parameter vector of interest. These constraints
are then solved numerically using tools such as those introduced in
Collins and Hong (1991). In Gulwani and Tiwari (2008), quantified
parametric polynomial constraints are considered. Then, satisfying
parameter vectors are found using Farkas’ Lemma and solvers from
sat-modulo theory (Barrett & Tinelli, 2017). Sum-of-Squares (SoS)
polynomials are used in Kapinski et al. (2014). The design involves
various system simulations and selection of candidate parameter
vectors using linear programming. A final validation of the selected
parameter vectors is then performed with Mathematica and using
interval analysis with dReal (Gao, Kong, & Clarke, 2013). Note
that our algorithm presented in Section 4.3 could also be used as
validation method for the approach presented in Kapinski et al.
(2014). Bilinear SoS programming is considered in Yang et al.
(2015).

An alternative way to find such an invariant is by considering
tools such as Lyapunov functions to prove the stability properties
of dynamical systems (Genesio, Tartaglia, & Vicino, 1985). For ex-
ample, Parrilo (2003) considers parametric functions to find a Lya-
punov function for a system with polynomial dynamics formed by
SoS polynomials and employs semidefinite programming (SdP) for
the parameter synthesis. In Ratschan and She (2006), Lyapunov
functions are designed via a branch-and-relax approach and lin-
ear programming to solve the induced constraints. In Goubault,
Jourdan, Putot, and Sankaranarayanan (2014) Darboux polyno-
mials are used to design specific forms of Lyapunov functions
involving rational functions, logarithmic, and exponential terms.
Similar invariants have been also considered in Rebiha, Matringe,
and Moura (2012).

Safety properties may also be directly verified in the design
phase, instead of being verified a posteriori, as done in the previous
approaches. In Platzer (2007, 2010), theorem-proving approaches
are employed using symbolic–numeric techniques to synthesize
invariants for differential (continuous and hybrid) systems. In

particular, quantifier elimination techniques are intensively used
and more recently a combination with the approach presented
in Kapinski et al. (2014) has been considered in Aréchiga,
Kapinski, Deshmukh, Platzer, and Krogh (2015). Alternatively,
techniques searching for barrier certificates aim at determining a
parametric function, called barrier, defining anhyper-surface in the
state-space which is never crossed by the dynamics of the system,
see Dai, Gan, Xia, and Zhan (2016), Prajna (2005), Prajna and
Jadbabaie (2004), Prajna and Rantzer (2005) and Sloth, Pappas, and
Wisniewski (2012). A parameter vector for this barrier has to be
found such that the barrier separates the part of the state-space
in which the initial state belongs from the unsafe region. In Prajna
(2005), Prajna and Jadbabaie (2004) and Prajna and Rantzer (2005),
polynomial dynamics and barrier functions are considered and
parameters are designed with SdP, which require some relaxation
to obtain a convex design problem. In Dai et al. (2016), two
candidate functions are combined to define more sophisticated
barriers, which parameters are again found via SdP. In Sloth et al.
(2012), linear matrix inequalities and SoS are used to generate the
barrier functions for hybrid dynamical systems with polynomial
dynamics.

Our work follows this approach for non-linear and possi-
bly non-polynomial continuous-time dynamical systems with
bounded perturbations and uses interval analysis for the barrier
parameter vector search phase.

3. Formulation

This section recalls the safety characterization introduced in
Prajna and Jadbabaie (2004) for continuous-time systems using
barrier functions.

3.1. Safety for continuous-time systems

Consider the autonomous continuous-time perturbed dynami-
cal system

ẋ = f (x, d), (1)

where x ∈ X ⊆ Rn is the state vector and d ∈ D is a constant and
bounded disturbance. The set of possible initial states at t = 0 is
denoted X0 ⊂ X. There is some unsafe subset Xu ⊆ X that shall
not be reached by the system, given any x0∈ X0 at time t = 0 and
any d ∈ D . We assume that classical hypotheses (see, e.g., Bellman
& Cooke, 1963) on f are satisfied so that (1) has a unique solution
x(t, x0, d) ∈ X for any given initial value x0∈ X0 at time t = 0
and any d ∈ D .

Definition 1. The dynamical system (1) is safe if ∀x0 ∈ X0, ∀d ∈

D and ∀t > 0, x(t, x0, d) ∉ Xu.

3.2. Barrier certificates

A way to prove that (1) is safe is by the barrier certificate
approach introduced in Prajna and Jadbabaie (2004). A barrier is
a differentiable function B : X → R that partitions the state
space X into X− where B(x) 6 0 and X+ where B(x) > 0 such
that X0 ⊆ X− and Xu ⊆ X+. Moreover, B has to be such that
∀x0 ∈ X0, ∀d ∈ D, ∀t > 0, B(x(t, x0, d)) 6 0.

Proving that B(x(t, x0, d)) 6 0 requires an evaluation of the
solution of (1) for all x0 ∈ X0 and d ∈ D . Alternatively, Prajna
and Jadbabaie (2004) provides some sufficient conditions a barrier
function has to satisfy to prove the safety of a dynamical system,
see Theorem 1.

Theorem 1. Consider the dynamical system (1) and the sets X, D,
X0 and Xu. If there exists a function B : X → R such that
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