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a b s t r a c t

We consider three problems for discrete-time switched systems with autonomous, general nonlinear
modes. The first is optimal control of the switching rule so as to optimize the infinite-horizon discounted
cost. The second and third problems occurwhen the switching rule is uncontrolled, andwe seek either the
worst-case cost when the rule is unknown, or respectively the expected cost when the rule is stochastic.
We use optimistic planning (OP) algorithms that can solve general optimal control with discrete inputs
such as switches. We extend the analysis of OP to provide certification (upper and lower) bounds on the
optimal, worst-case, or expected costs, aswell as to design switching sequences that achieve these bounds
in the deterministic case. In this case, since a minimum dwell time between switching instants is often
required, we introduce a new OP variant to handle this constraint, and analyze its convergence rate. We
provide consistency and closed-loop performance guarantees for the sequences designed, and illustrate
that the approach works well in simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems consist of a set of linear or nonlinear
dynamics calledmodes, togetherwith a rule for switching between
these modes (Liberzon, 2003). They are employed to model real-
world systems that are subject to known or unknown abrupt
parameter changes such as faults (Du, Jiang, & Shi, 2015; Li, Gao,
Shi, & Lam, 2016), including for instance embedded systems the
automotive industry, aerospace, and energy management. This
important class of hybrid systems is therefore heavily studied,
with a main focus on stability and stabilization, see surveys (Lin
& Antsaklis, 2009; Shorten,Wirth, Mason,Wulff, & King, 2007) and
papers (Branicky, 1998; Daafouz, Riedinger, & Iung, 2002; Geromel
& Colaneri, 2006; Lee & Dullerud, 2007; Pettersson & Lennartson,
1997). Performance optimization for switched systems has also

✩ The material in this paper was partially presented at the 54th IEEE Conference
on Decision and Control, December 15–18, 2015, Osaka, Japan. This paper was
recommended for publication in revised form by Associate Editor Huijun Gao under
the direction of Editor Ian R. Petersen.

E-mail addresses: lucian@busoniu.net (L. Buşoniu),
jamal.daafouz@univ-lorraine.fr (J. Daafouz), marcoscesarbragagnolo@gmail.com
(M.C. Bragagnolo), constantin.morarescu@univ-lorraine.fr (I.-C. Morărescu).

been investigated, see e.g. the survey (Zhu & Antsaklis, 2015)
and papers (Bengea & DeCarlo, 2005; Claeys, Daafouz, & Henrion,
2016; Riedinger, Iung, & Kratz, 2003; Seatzu, Corona, Giua, &
Bemporad, 2006; Shaikh & Caines, 2007; Xu & Antsaklis, 2003).
Hybrid versions of the Pontryagin Maximum Principle or dynamic
programming have been proposed (Riedinger et al., 2003; Shaikh
& Caines, 2007), with the drawback of lacking efficient numerical
algorithms. Suboptimal solutions with guaranteed performance
are given by Geromel, Deaecto, and Daafouz (2013) and Zhang and
Abate (2012). The former efficiently represents the approximate
value function using relaxations. The latter proves that the so-
called min-switching strategies are consistent, i.e. that they
improve performance with respect to non-switching strategies.
Certification bounds (Geromel & Korogui, 2008) (lower and upper
bounds on performance) are provided for linear switched systems
with a dwell time assumption by Jungers and Daafouz (2013).
Claeys et al. (2016) treat the problem by introducing modal
occupation measures, which allow relaxation to a primal linear
programming (LP) formulation. Overall, however, optimal control
remains unsolved for general switched systems.

Motivated by this, our papermakes the following contributions.
We propose an approach inspired from the field of planning in
artificial intelligence, to either design switching sequences with
near-optimal performance when switching is controllable, or to
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evaluate the performance when switching acts as a disturbance.
We call the first problem PO, and the second either PW when
the switching rule is unknown, in which case we estimate
the worst-case performance; or PS when the switches evolve
stochastically along a known Markov chain, in which case we
evaluate the expected performance. Throughout, we consider a
set of autonomous, general nonlinear modes, and a performance
index consisting of the discounted infinite-horizon sum of general,
nonquadratic stage costs. Optimistic planning (Buşoniu & Munos,
2012; Hren & Munos, 2008; Munos, 2014) is used to search
the space of possible switching sequences. In all cases, our
approach guarantees certification, lower and upper bounds on the
(expected) performance.

When itmakes sense to do so, namely in PO and PW, themethod
also designs a switching sequence that achieves the certification
bounds. Since a minimum dwell time δ between switching
instants must often be ensured, we introduce a new optimistic
planner called OPδ that handles this constraint, and analyze its
convergence rate. The analysis provides consistency and closed-
loop performance guarantees for the sequences designed. Different
from typical results, consistency shows improvement with respect
to any suboptimal sequences, not only stationary ones. Finally, we
illustrate the practical performance of the approach in simulations
for several linear examples and a nonlinear one.

Compared to the optimal control methods reviewed above,
the advantages of our approach include: a characterization of the
certification bounds, a procedure to design a worst-case sequence,
a designmethodwithminimum dwell time, improved consistency
results, and the ability to handle very general nonlinear modes.
While a high computational complexity is unavoidable due to this
generality, our analysis is focused precisely on characterizing the
relation between computation and quality of the bounds.

An important remark is that much of the literature focuses on
stability (Lin & Antsaklis, 2009; Shorten et al., 2007), whereas our
aim is to providenear-optimality guarantees. Stability is a separate,
difficult problem for discounted costs (Cardoso De Castro, Canudas
De Wit, & Garin, 2012; Kiumarsi, Lewis, Modares, Karimpour,
& Naghibi-Sistani, 2014; Postoyan, Buşoniu, Nešić, & Daafouz,
in press). Nevertheless, in some cases our approach can exploit
existing stability conditions: e.g. for some types of linear modes
stability may be guaranteed under a dwell time constraint using
the approach of Geromel and Colaneri (2006), in which case OPδ
can enforce this constraint and thereby ensure stability.

The stochastic switching in PS leads to a Markov jump system,
and there is a large body of literature dealing with such systems,
again with a focus on linear modes (Boukas, 2006; Costa, Fragoso,
& Marques, 2005), see e.g. Vargas, Costa, and do Val (2006) for
optimal control. A recent nonlinear result is given by Zhong, He,
Zhang, and Wang (2014), who analyze the stability properties of
optimal mode inputs for Markov jump systems with nonlinear
controlled modes. The practical implementation of Zhong et al.
(2014) works for unknown mode dynamics, but without error
guarantees, whereas all our methods provide tightly characterized
bounds.

In the context of existing planning methods, solving PO
and PW without dwell-time is a straightforward application of
optimistic planning (Hren & Munos, 2008). In contrast, enforcing
a minimum dwell-time requires deriving a novel algorithm and
its accompanying analysis. Finally, solving PS can be seen as a
special case of optimistic planning for stochastic systems (Buşoniu
& Munos, 2012), but the nature of this special case allows us to
derive a streamlined analysis. Compared to the preliminary version
of this work (Buşoniu, Bragagnolo, Daafouz, & Morarescu, 2015),
here we handle the new case of stochastic switching, provide
consistency and closed-loop guarantees, and study two additional
examples; in addition to including more technical discussion at
several points in the paper.

Next, Section 2 formalizes the problem and Section 3 gives the
necessary background. The approach is described in Section 4 for
the optimal and worst-case problems PO and PW, and in Section 5
for the stochastic switching problem PS. Section 6 evaluates the
planners in simulation examples of all these problems. Section 7
concludes.

List of symbols and notations

x, X, σ , S State, state space, mode, set of modes
M Number of modes
fσ , p Dynamics in mode σ , mode probabilities
d, σd Depth, mode sequence of length/depth d
γ , g,G Discount factor, stage cost, cost bound
J; J, J, J̃ Cost; optimal, worst-case, expected cost
ρ, v, ṽ Reward function, value, expected value
r Reward value
n Computation budget
T , T ∗, L(T ) Tree, near-optimal tree, leaves of T

l, b Lower, upper bound on deterministic value
L, B Lower, upper bound on expected value
l∗, b∗, L∗, B∗ Best bounds found by the algorithms
d∗ Largest depth found by the algorithms
ε Near-optimality or sub-optimality
κ Branching factor of near-optimal tree
K Complexity of dwell-time problem
β Complexity of stochastic problem
δ, ∆ Minimum dwell time, dwell time
e, λ Leaf contribution, contribution cutoff
C, a, b, c Constants
· , · Quantity · in optimal, worst-case problem
·δ Quantity · for minimum dwell-time δ

O(·), Ω(·) Bounded above, below by · up to constants
Õ(·) Bounded above by · up to logarithmic terms
[·, ·] Concatenation of two mode sequences

2. Problem statement

Consider a discrete-time nonlinear switched systemwith states
x ∈ X . The system can be at each step k in one of M modes
σ ∈ S =


σ 1, . . . , σM


, where each mode is autonomous:

xk+1 = fσk(xk). (1)

The dwell time is defined as the number of steps during
which the mode remains unchanged after a switch. A function
g(xk, σk) assigns a numerical stage cost to each state–mode pair,
e.g. quadratic in xk up to saturation limits, see Example 1. Given a
fixed initial state x0, define an infinitely-long switching sequence
σ∞ = (σ0, σ1, . . .) and the infinite-horizon discounted cost of this
sequence:

J(σ∞) =

∞
k=0

γ kg(xk, σk) (2)

where γ ∈ (0, 1) is the discount factor and xk+1 = fσk(xk). The
dynamics f can be very general and a closed-form mathematical
expression may not be available for them; the only requirement is
that f can be simulated numerically.

To start with, we define two different problems:

PO. Optimal control: Find the optimal value J = infσ∞ J(σ∞) and
a corresponding switching sequence that achieves it.
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