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a b s t r a c t

Lyapunov functions provide a tool to analyze the stability of nonlinear systems without extensively
solving the dynamics. Recent advances in sum-of-squares methods have enabled the algorithmic
computation of Lyapunov functions for polynomial systems. However, for general large-scale nonlinear
networks it is yet very difficult, and often impossible, both computationally and analytically, to find
Lyapunov functions. In such cases, a system decomposition coupled to a vector Lyapunov functions
approach provides a feasible alternative by analyzing the stability of the nonlinear network through a
reduced-order comparison system. However, finding such a comparison system is not trivial and often, for
a nonlinear network, there does not exist a single comparison system. In this work, we propose amultiple
comparison systems approach for the algorithmic stability analysis of nonlinear systems. Using sum-
of-squares methods we design a scalable and distributed algorithm which enables the computation of
comparison systems using only communications between the neighboring subsystems. We demonstrate
the algorithm by applying it to an arbitrarily generated network of interacting Van der Pol oscillators.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A key to maintaining the successful operation of real-world
engineering systems is to analyze the stability of the systems under
disturbances. Lyapunov functions methods provide powerful tools
to directly certify stability under disturbances, without solving the
complex nonlinear dynamical equations (Haddad & Chellaboina,
2008; Lyapunov, 1892). However for a general nonlinear system,
there is no universal expression for Lyapunov functions. Recent
advances in sum-of-squares (SOS) methods and semi-definite
programming (SDP), Papachristodoulou et al. (2013), Prajna,
Papachristodoulou, Seiler, and Parrilo (2005) and Sturm (1999),
have enabled the algorithmic construction of polynomial Lyapunov
functions for nonlinear systems that can be expressed as a set
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of polynomial differential algebraic equations (Chesi, 2011; Tan,
2005). Unfortunately, such computational methods suffer from
scalability issues and, in general, become intractable as the system
size grows (Anderson, Chang, & Papachristodoulou, 2011). For
this reason more tractable alternatives to SOS optimization have
been proposed. One such approach, known as DSOS and SDSOS
optimization, is significantly more scalable since it relies on
linear programming and second order cone programming (Ahmadi
& Majumdar, 2014). A different approach chooses Lyapunov
functions with a chordal graphical structure in order to convert
the semidefinite constraints into an equivalent set of smaller
semidefinite constraints which can be exploited to solve the SDP
programs more efficiently (Mason & Papachristodoulou, 2014).
Nevertheless, the increased scalability decreases performance
since both approximations are usuallymore conservative than SOS
approaches.

Despite these computational advances, global analysis of large-
scale systems remains problematic when computational and
communication costs are considered. Often, a decomposition–
aggregation approach offers a scalable distributed computing
framework, togetherwith a flexible analysis of structural perturba-
tions (Šiljak, 1991) and decentralized control designs (Šiljak, 1978),
as required by the locality of perturbations. Thus, for large-scale
systems, it is often useful to model the system as a network of
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small interacting subsystems and study the stability of the full in-
terconnected system with the help of the Lyapunov functions of
the isolated subsystems. For example, one approach is to construct
a scalar Lyapunov function expressed as aweighted sumof the sub-
system Lyapunov functions and use it to certify stability of the full
system (Araki, 1978; Michel, 1983; Šiljak, 1972; Weissenberger,
1973). However, such amethod requires centralized computations
and does not scale well with the size of the network. Alternatively,
methods based on vector Lyapunov functions, Bailey (1966) and
Bellman (1962), are computationally very attractive due to their
parallel structure and scalability, and have generated considerable
interest in recent times (Karafyllis & Papageorgiou, 2015; Kundu
& Anghel, 2015a,c; Xu, Wang, Hong, Jiang, & Xu, 2016). However,
applicability of these methods to large-scale nonlinear systems
with guaranteed rate of convergence still remains to be explored.
For example, in Kundu and Anghel (2015a,c) the authors consider
asymptotic stability while the works in Karafyllis and Papageor-
giou (2015) and Xu et al. (2016) are demonstrated on small-scale
systems.

Inspired by the results on comparison systems, Beckenbach
and Bellman (1961), Brauer (1961) and Conti (1956), it has been
observed that theproblemof stability analysis of an interconnected
nonlinear system can be reduced to the stability analysis of a
linear dynamical system (or, ‘single comparison system’) whose
state space consists of the subsystem Lyapunov functions. Success
in finding such stable linear comparison system then guarantees
exponential stability of the full interconnected nonlinear system.
However, for a given interconnected system, computing these
comparison systems still remained a challenge. In absence of
suitable computational tools, analytical insightswere used to build
those comparison systems, such as trigonometric inequalities in
power systems networks (Jocic, Ribbens-Pavella, & Šiljak, 1978).
In a recent work (Kundu & Anghel, 2015b), SOS-based direct
methods were used to compute the single comparison system for
generic nonlinear polynomial systems, with some performance
improvements over the traditional methods. However there are
major challenges before such a method can be used in large-scale
systems. For example, it is generally difficult to construct a single
comparison system that can guarantee stability under a wide set
of disturbances. Also, while Kundu and Anghel (2015b) present a
decentralized analysis where the computational burden is shared
between the subsystems, the scalability of the analysis is largely
dependent on the cumulative size of the neighboring subsystems.

In this article we present a novel conceptual and computational
framework which generalizes the single comparison system
approach into a sequence of stable comparison systems, that
collectively ascertain stability, while also offering better scalability
by parallelizing the subsystem-level SOS problems. The set of
multiple comparison systems are to be constructed adaptively
in real-time, after a disturbance has occurred. With the help
of SOS and semi-definite programming methods, we develop
a fully distributed, parallel and scalable algorithm that enables
computation of the comparison systems under a disturbance, with
only minimal communication between the immediate neighbors.
While this approach is applicable to any generic dynamical system,
we choose an arbitrarily generated network of modified1 Van
der Pol oscillators (Van der Pol, 1926) for illustration. Under a
disturbance, the subsystems communicate with their neighbors to
algorithmically construct a set of multiple comparison systems,
the successful construction of which can certify stability of
the network. The rest of this article is organized as follows.
Following some brief background in Section 2 we describe the

1 Parameters are chosen to make the equilibrium point stable.

problem in Section 3. We present the traditional approach to
single comparison systems and an SOS-based direct method of
computing the comparison systems in Section 4. In Section 5,
we introduce the concept of multiple comparison systems, and
propose a parallel and distributed algorithmic construction of the
comparison systems in real-time. We demonstrate an application
of this algorithm to a network of Van der Pol oscillators in Section 6,
before concluding the article in Section 7.

2. Preliminaries

Let us consider the dynamical system

ẋ (t) = f (x (t)) , t ≥ 0, x ∈ Rn, f (0) = 0, (1)

with an equilibrium at the origin,2 and f : Rn
→ Rn is locally

Lipschitz. Let us use | · | to denote both the Euclidean norm (for a
vector) and the absolute value (for a scalar).

Definition 1. The equilibrium point at the origin is said to be
asymptotically stable in a domain D ⊆ Rn, 0 ∈ D , if
limt→∞ |x(t)| = 0 for every |x(0)| ∈ D , and it is exponentially
stable if there exists b, c > 0 such that |x(t)| < ce−bt |x(0)| ∀t ≥
0, for every |x(0)| ∈ D .

Theorem 1 (Lyapunov, 1892, Khalil, 1996, Thm. 4.1). If there exists a
domain D ⊆ Rn, 0 ∈ D , and a continuously differentiable positive
definite function Ṽ : D → R≥0, i.e. the ‘Lyapunov function’ (LF),
then the origin of (1) is asymptotically stable if ∇Ṽ T f (x) is negative
definite inD , and is exponentially stable if ∇Ṽ T f (x) ≤ −α Ṽ ∀x ∈ D ,
for some α > 0.

The region of attraction (ROA) of the stable equilibrium point at
origin can be (conservatively) estimated as Genesio, Tartaglia, and
Vicino (1985)

R := {x ∈ D |V (x) ≤ 1 } , with V (x) = Ṽ (x)/γ max, (2a)

where γ max
:= max


γ

 x ∈ Rn
Ṽ (x) ≤ γ


⊆ D


, (2b)

i.e. the boundary of the ROA is estimated by the unit level-set of
a suitably scaled LF V (x). Relatively recent studies have explored
how sum-of-squares (SOS) based methods can be utilized to find
LFs by restricting the search space to SOS polynomials (Anghel,
Milano, & Papachristodoulou, 2013; Jarvis-Wloszek, 2003; Parrilo,
2000; Tan, 2006). Let us denote by R [x] the ring of all polynomials
in x ∈ Rn.

Definition 2. A multivariate polynomial p ∈ R [x] , x ∈ Rn, is
a sum-of-squares (SOS) if there exist some polynomial functions
hi(x), i = 1 . . . s such that p(x) =

s
i=1 h

2
i (x). We denote the ring

of all SOS polynomials in x ∈ Rn by Σ[x].

Checking if p ∈ R[x] is an SOS is a semi-definite problem
which can be solved with a MATLAB R⃝ toolbox SOSTOOLS
(Papachristodoulou et al., 2013; Prajna et al., 2005) along with a
semidefinite programming solver such as SeDuMi (Sturm, 1999).
The SOS technique can be used to search for polynomial LFs
by translating the conditions in Theorem 1 to equivalent SOS
conditions (Chesi, 2010; Jarvis-Wloszek, 2003; Papachristodoulou
et al., 2013; Papachristodoulou & Prajna, 2005; Prajna et al.,
2005; Wloszek, Feeley, Tan, Sun, & Packard, 2005). An important
result from algebraic geometry, called Putinar’s Positivstellensatz
theorem (Lasserre, 2009; Putinar, 1993), helps in translating
the SOS conditions into SOS feasibility problems. The Putinar’s
Positivstellensatz theorem states (see Lasserre, 2009, Ch. 2):

2 Note that by shifting the state variables any equilibrium point of interest can be
moved to the origin.
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