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a b s t r a c t

Features of the data-driven approximate value iteration (AVI) algorithm, proposed in Li et al. (2014) for
dealing with the optimal stabilization problem, include that only process data is required and that the
estimate of the domain of attraction for the closed-loop is enlarged. However, the controller generated by
the data-driven AVI algorithm is an approximate solution for the optimal control problem. In this work, a
quantitative analysis result on the error bound between the optimal cost and the cost under the designed
controller is given. This error bound is determined by the approximation error of the estimation for the
optimal cost and the approximation error of the controller function estimator. The first one is concretely
determined by the approximation error of the data-driven dynamic programming (DP) operator to the DP
operator and the approximation error of the value function estimator. These three approximation errors
are zeros when the data set of the plant is sufficient and infinitely complete, and the number of samples
in the interested state space is infinite. This means that the cost under the designed controller equals to
the optimal cost when the number of iterations is infinite.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control is a method for finding a controller for a dy-
namic system such that a given cost is as optimal as possible. DP,
based on optimality principle (Bellman, 1957), is a useful tool of
solving the optimal control problem. However, DP suffers from
the accurate modeling and the curse of dimensionality. To over-
come this problem, the idea of approximate dynamic programming
(ADP) was proposed byWerbos in 1968 firstly (Werbos, 1968) and
received more and more attentions in recent decades (Balakrish-
nan, Ding, & Lewis, 2008; Jiang & Jiang, 2013; Liu, Li, &Wang, 2015;
Wang, Zhang, & Liu, 2009).
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Recursive DP algorithms can be divided into two classes:
policy iteration (PI) and value iteration (VI) (Bertsekas, 2001).
This paper focuses on VI. VI derived directly from the property
of DP operator, that is, the optimal cost function is obtained after
successively using the DP operator on a function over an infinite
number of times. However, for plants with infinite state space
and control input space, VI may be implementable only through
approximations, which lead the development of approximate VI
(AVI) (Al-Tamimi, Lewis, & Abu-Khalaf, 2007; Liu, Wang, & Yang,
2013; Liu &Wei, 2013). Instead of updating a value function for all
states, it can be done only for some states and estimate the updated
value function for the remaining states by a function estimator.

In practice, numerous plants are difficult to be modeled accu-
rately. Hence, the data-driven control approaches in which con-
trollers are designed directly from data and the modeling step is
bypassed, has shown great promise and thus recently undergone
extensive research (Hou & Jin, 2011a,b; Hou &Wang, 2013). How-
ever, most ADP algorithms require prior plant knowledge/model.
Thus, the wide applicability of ADP necessitates the development
of data-driven ADP algorithms, which only require the plant data
instead of the plant knowledge/model. For discrete-time systems,
several data-drivenADP algorithms, based onQ value function (i.e.,
action-dependent value function), have been proposed (Al-Tamimi
et al., 2007; He & Jagannathan, 2007; Xu, Hou, Lian, & He, 2013).
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ADP methods are widely applied for two classes of plants:
Markov decision process (MDP) and dynamical systems described
by ordinary differential/difference equations. Given that the state
spaces considered in the MDP are finite or countable, the stabil-
ity issue is usually overlooked. For dynamical systems, stability
must be considered in the context of ADP while feedback control
problems are studied (Lewis & Vrabie, 2009). As discussed in Bal-
akrishnan et al. (2008), controllers derived frommodel-based ADP
algorithms assure stability of closed-loops because they are opti-
mal controllers essentially. However, the analysis of closed-loop
stability for data-driven ADP methods is quite different from that
of the model-based framework and considerably difficult. A few
results are published (Al-Tamimi et al., 2007; He & Jagannathan,
2007; Liu, Sun, Si, Guo, & Mei, 2012; Sokolov, Kozma, Werbos, &
Werbos, 2015). For linear systems or affine nonlinear systems, sta-
bility results are available in Al-Tamimi et al. (2007) and He and Ja-
gannathan (2007). For general nonlinear systems, stability results
for action-dependent heuristic DP are provided in Liu et al. (2012)
and Sokolov et al. (2015). However, such results do not describe
the domain of attraction (DOA) for closed-loops.

For general nonlinear systems, the DOA, which is an invariant
set that characterizes stabilizable areas around an equilibrium,
requires extensive investigation because global stabilization is
difficult to achieve. In Li and Hou (2014), under the assumption
that plant model is unknown, a set of controllers for stabilizing
plants is found directly from data for discrete time systems, and
the estimate of the DOA for closed-loops is enlarged by selecting
an appropriate Lyapunov function. On the basis of this result, Li,
Hou, and Feng (2014) proposed a data-driven AVI algorithm to find
a controller from the controller set to minimize the given cost.
Because the plant model is unknown, the data-driven DP operator
is proposed to replace the DP operator in AVI iterations in order
to find an estimation of the optimal cost. Again because the plant
model is unknown, a sub-optimal controller is estimated using
the relevant data derived from the estimation of the optimal cost.
Features of the data-driven AVI algorithm include that only data
is required and that the estimate of the DOA for the closed loop is
enlarged, but the controller is sub-optimal.

The contribution of this paper is that a quantitative analysis
result on the error bound between the optimal cost and the cost
under the sub-optimal controller is presented. This error bound is
determined by two approximation errors: the first one is caused
by using an estimation of the optimal cost and the second one is
caused by using an estimation of a sub-optimal controller derived
from the estimation of the optimal cost. The first one is concretely
determined by the approximation error of the data-driven DP
operator to the DP operator and the approximation error of the
value function estimator. The approximation error bound of the
data-driven DP operator to the DP operator is zero when the data
set of the plant is sufficient and infinitely complete. To analyze
the approximation error bound of the value function estimator,
the value function estimator is selected as the one-output
Gaussian processes regression (GPR) with noise-free training
data. GPR can provide the standard deviation of the predictions
to estimate the approximation error bound and can select the
hyperparameters (including the noise level) according to the
training data (Rasmussen & Williams, 2006). Because the training
data is noise-free, the error bound of the value function estimator
is zero when the number of the training data is infinite. In order to
analyze the second error bound, the controller function estimator
is also selected as the multi-output GPR with noisy training data.
When the data set of the plant is sufficient and infinitely complete,
the training data for the controller estimator is also noisy-free.
Under this condition, the error bound of the controller function
estimator is zero when the number of the training data is infinite.
As shown by the main result, if these three approximation errors

are zeros, the cost under the designed controller equals to the
optimal cost when the number of iterations is infinite.

The rest of the paper is organized as follows. In Section 2,
the control problem is formulated. In Section 3, the data-driven
stabilization method and the data-driven AVI method are briefly
introduced. In Section 4, theoretical analysis results about the
optimality error bound are presented. In Section 5, simulation
results are presented. Finally, in Section 6, the conclusion of the
study is drawn.
Notation: R represents the set of real number. Z+ represents the
set of positive integer number. Rn represents the set of real vectors
with n elements. For a vector x ∈ Rn, ∥x∥ represents

√
xT x and x(i)

represents the ith element of x, i = 1, 2, . . . , n.

2. Problem formulation

Consider the nonlinear discrete-time system

x(k + 1) = f (x(k), u(k)) , x(0) = x0, k ∈ Z+, (1)
where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input and
f : Rn

× Rm
→ Rn is an unknown continuous function satisfying

0 = f (0, 0).
Although f is unknown, we have a point-wise data set

Πd
=


(xdf ,i; u

d
i ; x

d
i ) ∈ Xd

f × Ud
× Xdxdf ,i = f


xdi , u

d
i


, i = 1, 2, . . . ,Np


(2)

where (xdf ,i; u
d
i ; x

d
i ) is the ith data point in Πd, Np is the number of

points in Πd, Xd
f , Xd

∈ Rn, and Ud
∈ Rm. The data set Πd should

contains adequate dynamic information of the plant, that is, Πd is
adequately sufficient and complete. For additional details, see Li
and Hou (2014).

Using the data setΠd, our control objective is to find a nonlinear
feedback controller or stationary policyµ : Rn

→ Rm such that the
closed-loop x(k+ 1) = f (x(k), µ(x(k))) is asymptotically stable at
x = 0 and that the estimate of the DOA for the closed-loop is as
large as possible. Meanwhile, for all initial state x0 in the estimate
of the DOA, the infinite horizon discounted cost

Vµ(x0) =

∞
k=0

γ kg (x(k), µ (x(k))) (3)

is as small as possible, here the constant 0 < γ < 1 is the
discounted factor, and g : Rn

× Rm
→ R is the instantaneous

cost satisfying uniform boundedness, g(0, 0) = 0 and g(x, u) >
0, ∀x ≠ 0, u ≠ 0.

The first part of the above control objective, the asymptotic
stabilization and the enlargement of the estimate of the DOA, was
realized in our previous work (Li & Hou, 2014). Under the same
framework, the second part of the control objective, minimizing
the cost function (3) for all initial states in the estimate of the DOA,
was partially realized in our another previouswork (Li et al., 2014).
In this study, we present the most significant theoretical analysis
result of the optimal control method proposed in Li et al. (2014).

3. Background materials

3.1. Data-driven stabilization

In our previous work (Li & Hou, 2014), under the assumption
that f in (1) is unknown, a state feedback asymptotic stabilization
controller is designed directly from available data. By selecting
an appropriate Lyapunov function, the estimate of the DOA for
the closed-loop is enlarged. The following lemma, which presents
sufficient conditions for a feedback controller asymptotically
stabilizing plant (1) and an estimate of the DOA for the closed-loop,
serves as the theoretical cornerstone of this method.
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