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a b s t r a c t

We introduce a game of trusted computation in which a sensor equipped with limited computing power
leverages a central computer to evaluate a specified function over a large dataset, collected over time.
We assume that the central computer can be under attack and we propose a strategy where the sensor
retains a limited amount of the data to counteract the effect of attack. We formulate the problem as a two
player game inwhich the sensor (defender) chooses an optimal fusion strategy using both the non-trusted
output from the central computer and locally stored trusted data. The attacker seeks to compromise the
computation by influencing the fused value through malicious manipulation of the data stored on the
central computer. We first characterize all Nash equilibria of this game, which turn out to be dependent
on parameters known to both players. Next we adopt an Iterated Best Response (IBR) scheme in which, at
each iteration, the central computer reveals its output to the sensor, who then computes its best response
based on a linear combination of its private local estimate and the untrusted third-party output. We
characterize necessary and sufficient conditions for convergence of the IBR along with numerical results
which show that the convergence conditions are relatively tight.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Internet of Things (IoT) (Internet of Things, 2015) is the
next generation internet where many embedded devices (sensors,
actuators, controllers, etc.) are interconnected and can exchange
data. Although such devices are becoming increasingly more
advanced and capable, the amount of data they can process is
still a small fraction of what they can collect. As a consequence,
IoT devices may need to leverage intermediate but more capable
devices that can store and compute over larger data streams.

We study the problem where a sensor (short for IoT device)
exchanges datawith a larger andmore powerful computer to carry
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out a specific computation on the data the sensor has collected
over a certain period of time. Ideally, the sensor would be able to
send/stream the data to the computer, which would then compute
the function and send back the result. However, we assume here
that the data stored in the central computer can be manipulated
maliciously by an attacker. In this case, the sensor has three
options: (1) to retain a small amount of the data and compute
the function of interest on such trustworthy data knowing that
the computation will not be as accurate or, (2) take the risk that
the attack is only mildly compromising the data on the central
computer so that the result of the computation is close to the true
value; or, (3) try to exchange partial results iteratively with the
central computer and fuse locally trusted computation on small
sample with tampered computation on the full dataset.

This paper formalizes the third scenario, which has the other
two as limiting cases. In particular, we model this problem of
trusted computation as a game between the sensor/central com-
puter and the attacker. We design and analyze a simple protocol in
which each player plays its best response and we study its conver-
gence properties. Additionally, this paper makes a ‘‘worst case’’ as-
sumption, namely that the attacker knows exactly the fusion strat-
egy adopted by the sensor.

The approach we consider in this paper is related to an emerg-
ing field called adversarial machine learning, wherein two parties,
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a learner and an attacker, are involved, see Biggio, Nelson, and
Laskov (2012), Huang, Joseph, Nelson, Rubinstein, and Tygar (2011)
and Sawade, Scheffer, Brückner, and Schffer (2013). The learner
uses data to train, for example, a classifier or a regressor, and the
attacker is modifying the data so that the learner ends up training
the algorithm incorrectly. In this context, the problem is posed as a
Bayesian game (Sawade et al., 2013), where the learner minimizes
the effect of the attack on the learning algorithm, whereas the at-
tacker maximizes the deviation of such learning algorithm from
the correct result and towards a strategically chosen outcome, un-
der the assumption that only a subset of the data can be modified.
In Sawade et al. (2013), for example, the e-mail spam problem is
considered, where the learner is set to train a classifier to discrimi-
nate between spam and non-spam,while the attacker tries tomax-
imize the chances that a spam is classified as non-spam.

The approach considered in this paper also relates to the
procedure of fictitious play (FP). In this procedure, each player tries
to learn the probability distribution from which the opponent is
drawing its actions (Brown, 1951; Robinson, 1951). A recent body
of work in the control literature analyzes convergence of fictitious
play for several scenarios (Marden, Arslan, & Shamma, 2009;
Shamma & Arslan, 2004, 2005). In particular, Shamma and Arslan
(2004) present unified energy-based convergence proofs thatwork
for several special classes of games under FP. In Shamma and
Arslan (2005), convergence to Nash equilibria is analyzed under
the assumption that each player can access the derivatives of the
updatemechanisms, leading to dynamic FP. A variant of FP, known
as Joint Strategy FP, is proposed and the convergence analyzed for
several classes of games, especially in high-dimensional spaces,
see Marden et al. (2009). More recently, Gaussian cheap talk
games, such as Farokhi, Texeira, and Langbort (2014), have been
considered. In this context, a sender (adversary) sends corrupted
information to a receiver (sensor) under the assumption that the
adversary has full knowledge of the receiver’s private information.

1.1. Main contributions

The contributions of this paper are four-fold. First, we formulate
a new problem on trusted computation within a game-theoretic
framework and adopt an Iterated Best Response (IBR) (Fudenberg,
1998; Reeves & Wellman, 2004) algorithm to compute final
strategies for the sensor and the attacker. More specifically, we
consider a protocol such that at each iteration, the attacker reveals
its output to the sensor that then computes its best response as a
linear combination of its private local estimate andof the untrusted
output. The attacker can then, based on the announced policy of
the sensor, decide its best response. There is a clear mismatch
in the information pattern between attacker and sensor and, in
particular, the fact that the attacker cannot access the realization
of the private local estimate of the sensor distinguishes this work
from the information pattern considered in cheap talk games
(Farokhi et al., 2014).

Second, we characterize conditions on the existence of equi-
libria of the game. These conditions and the equilibria themselves
turn out to be functions of all of the problem parameters, viz., the
private information belonging to both players. Therefore, to obtain
results from a single player’s perspective, a third contribution of
this paper is to define two notions of convergence for the IBR algo-
rithm, depending upon whether the algorithm converges for some
initial value picked by the attacker (weak convergence), or for every
initial value (strong convergence). We derive necessary conditions
for weak convergence and sufficient conditions for strong conver-
gence. If the algorithm converges, then it also tells the sensor how
to optimally fuse its private estimate with the output. We iden-
tify regimes inwhich some sufficient conditions are also necessary.

Numerical simulations indicate that the conditions are relatively
tight.

Fourth and finally, the analysis in this paper allows for a
certain level of mismatch in the distributions used by the players
in computing their respective cost functions. This generalizes
the analysis presented in the preliminary conference version
(Bopardikar, Speranzon, & Langbort, 2014), which assumed that
the attacker knows precisely the mean of the distribution used by
the sensor to compute its private estimate.

Given that the proposed framework requires an iterative pro-
cess between sensor and the central computer, the algorithm pre-
sented in this paper could be suitable for computation algorithms
that are iterative in nature so that partial results can be exchanged
between sensor and the central computer. Examples are eigen-
value/eigenvector computation, matrix factorization, iterative op-
timization methods, etc. The connection of this work to control
theory lies in the fact that convergence analysis of the IBR essen-
tially leads to a closed loop dynamical system. This aspect is sim-
ilar in flavor to the set-ups analyzed in Marden et al. (2009) and
Shamma and Arslan (2004, 2005). Using geometric relationships to
bound the evolution, we determine necessary and sufficient condi-
tions on the parameters involved which will lead to stability from
any/some initial conditions.

1.2. Paper organization

The paper is organized as follows. The problem formulation and
the proposed approach is described in Section 2. Conditions for
the existence of equilibria together with an insightful geometric
interpretation are presented in Section 3. Convergence results for
the IBR algorithm are derived in Section 4 along with supporting
numerical results. Finally, conclusions and directions for future
research are discussed in Section 5. Proofs of the results in this
paper as well as improved results for the case of equal means
from Bopardikar et al. (2014) are available online at Bopardikar,
Speranzon, and Langbort (2016).

2. Problem formulation

The problem scenario is depicted in Fig. 1. This work assumes
that the data and the computation to be carried out are such that
it is possible for the sensor to compute an estimate of the true
output locally using some random subset of the data, and that the
statistics (up to themeanwith a finite secondmoment) about how
the actual value is distributed given a value of estimate is known
to the sensor. For example, suppose that the data d ∈ RN×M ,
consisting of N data points each represented by anM-dimensional
feature vector, is uploaded through a trusted sensor to the third-
party computer. During the upload process, the sensor could retain
a randomly sparsified sample d̂ ∈ RN×M of the original data d. The
data, once stored on the central computer, can be compromised by
the attacker leading to a different value d̄ ∈ RN×M . The sensor seeks
to compute the true value of the function y = g(d) ∈ Rk of the data
d where g : RN×M

→ Rk is an algorithm of interest. For example,
g(d) ∈ R could be the maximum singular value of a matrix with d̂
being a sparsified sample of d. The sensor has only an approximate
knowledge, ŷ = g(d̂) ∈ Rk, of y, obtained from the sparsified data
d̂. The third-party computer computes the value ȳ = g(d̄) ∈ Rk

based on the corrupted data d̄. This paper does not address the
problem of how to construct a sparsified sample d̂, but rather
makes an implicit assumption that for a given number of non-zero
elements in d̂ and a corresponding sparsification procedure, the
distribution of y given ŷ can be characterized a priori. The actual
construction of a specific sampling procedure for a computation
such as the maximum eigenvalue would be a topic of future
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