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a b s t r a c t

We provide a new control design for chemostats, under constant substrate input concentrations, using
piecewise constant delayed measurements of the substrate concentration. Our growth functions can be
uncertain and are not necessarily monotone. The dilution rate is the control. We use a new Lyapunov
approach to derive conditions on the largest sampling interval and on the delay length to ensure
asymptotic stabilization properties of a componentwise positive equilibrium point.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This work continues our search for controls that stabilize
componentwise positive equilibria in chemostat models, un-
der the incomplete state measurements and model uncertain-
ties that usually occur in biotechnology laboratories, and so is
strongly motivated by the ubiquity of the chemostat in a plethora
of biological and engineering settings that are of compelling in-
terdisciplinary interest, in which stabilization of componentwise
positive equilibria is needed to ensure persistence of species. The
chemostat is used for the continuous culture of microorganisms. It
was first studied inMonod (1950) and Novick and Szilard (1950). It
is regarded in biotechnology, ecology, andmicrobiology as an ideal
way to represent cell or microorganism growth, wastewater treat-
ment, or natural environments like lakes; see Beauthier, Winkin,
and Dochain (2015), Bernard, Hadj-Sadok, Dochain, Genovesi,
and Steyer (2001), Fritsch, Harmand, and Campillo (2015), Gouzé
and Robledo (2005), Lemesle and Gouzé (2008), and Robledo,
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Grognard, and Gouzé (2012). The variables are the microorgan-
ism and substrate concentrations, whose dynamics are based on
mathematical models, e.g., mass-balance equations; see Mazenc,
Malisoff, andHarmand (2008) and Smith andWaltman (1995). Two
challenges in designing controls for chemostats are their nonlin-
earity and their lack of online actuators and sensors; see Cougnon,
Dochain, Guay, and Perrier (2011).

Moreover, when online devices are available to measure
biomass and substrate concentrations, they usually only provide
delayed discrete measurements. It is common to design controls
using continuous time models, which are then discretized before
being applied. However, to prove that continuous time controllers
ensure that the desired stability objectives aremet, onemust show
robustness with respect to discretization. Chemostats are also
subjected to uncertainty in the growth functions, which should
also be taken into account in the control design. To the best of
our knowledge, no rigorous theoretical analysis in the literature
has addressed the delay, robustness, and sampling problems that
we consider here. The work Robledo (2009) assumes that the
measurements are continuous.

The preceding remarks motivated (Mazenc, Harmand, &
Mounier, 2013) and this work, which solves a complementary
problem to the ones in Mazenc et al. (2013). Here we consider
the classical chemostat model in Smith and Waltman (1995)
that contains one substrate and one species, except here we
also include delays, sampling, and uncertainties, which are three
features that are not contained in the classical chemostat model.
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We assume that the input substrate concentration is constant,
and that the growth rate is of Haldane type (which has a growth
limitation for low substrate concentrations, and inhibition at high
concentrations). The dilution rate is the control, and uses delayed
and sampled observations. Controlling this system is difficult, for
two reasons. First,works such asMazenc,Malisoff, andDinh (2013)
that prove global asymptotic stability under delay and sampling
use state feedbacks. Since our work has output feedbacks, it is
outside the scope of Mazenc et al. (2013).

Second, chemostats with non-monotonic growth rates gener-
ally have multiple equilibria, under constant dilution rates. One is
unstable, while another is locally exponentially stable. The work
Mazenc et al. (2013) stabilized points of the second type, but here
we stabilize points of the first type in caseswhere the growth rate is
uncertain and not necessarily monotone. Our stabilizing controller
only requires measurements of the substrate, which are piecewise
constant and delayed. Under suitable bounds on the delay size
and on the sampling interval, our control provides global asymp-
totic stability to a componentwise positive equilibrium when the
growth function is known, and input-to-state stability (or ISS) (as
defined in Khalil, 2002) with respect to uncertainties in the growth
functions. This differs from Mazenc et al. (2013), where no con-
straints on the delay and sampling intervals were used.We believe
that these extra constraints are needed because under constant di-
lution rates, the equilibrium that we stabilize in this paper would
have been unstable.

While reminiscent of Mazenc et al. (2013), the barrier functions
that we use here allow us to certify ISS, which was not considered
in Mazenc et al. (2013). The main result of Mazenc et al. (2013)
does not apply here, even in the special case where the growth
functions are known. Our proof also differs from Mazenc and
Malisoff (2010), which assumes that species measurements are
available. When there are no perturbations, our results contrast
with Gouzé and Robledo (2006) and other works that do not
include delays or sampling or ISS. Our new work also improves
on our conference version (i.e., Mazenc, Harmand, & Malisoff,
2016), which did not allow uncertainties in the growth functions,
because here, we prove ISS with respect to the uncertainties in
the growth functions under arbitrarily large uncertainty bounds
and positivity constraints on the states. See Section 3 for our main
result, Section 4 for its proof, and Section 5 for an illustration
including simulations.

2. Model and notation

Our basic chemostat model is
ṡ(t) = D[sin − s(t)] − µ(s(t))x(t)
ẋ(t) = [µ(s(t)) − D]x(t) (1)

(where we used the standard technique of scaling the species level
x(t) in order to eliminate the constant yield) but see below for
generalizationswhere the growth functionµ can be uncertain. The
states x and s are positive valued (and represent the species and
substrate levels, respectively), the substrate input concentration
sin > 0 is a constant, the dilution rate D is a positive valued control
that we will specify, and the growth function µ satisfies:

Assumption 1. The function µ is of class C1 and µ(0) = 0. Also,
there is a constant sM > 0 such thatµ′(s) > 0 for all s ∈ [0, sM) and
µ′(s) ≤ 0 for all s ∈ [sM , ∞). Finally, µ(s) > 0 for all s > 0. �

By C1, we mean continuously differentiable. Assumption 1
holds for all functions of the form

µ(s) =
k1s

1 + k2s + k3s2
, (2)

Fig. 1. Uptake function from (3), showing maximizer sM = 1/
√
2 as Blue Dot and

sin = 1 as RedDot. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

for any constants ki > 0 for i = 1 to 3, with sM = 1/
√
k3. Functions

of the form (2) are called Haldane functions. In Fig. 1, we plot the
special case of (2) and sin where

µ(s) =
0.5s

1 + 0.25s + 2s2
and sin = 1 (3)

including the maximizer sM = 1/
√
2. In Appendix A, we prove the

next lemma, where a function α : [0, ∞) → [0, ∞) is defined
to be of class K∞ provided α(0) = 0 and α is continuous, strictly
increasing, and unbounded; and µ′

1(0) is the derivative from the
right.

Lemma 1. If Assumption 1 holds, then we can construct a function
µ1 ∈ C1

∩ K∞ and a nondecreasing C1 function γ : R → [0, ∞)
such that γ (m) = 0 for all m ≤ 0,

µ(s) =
µ1(s)

1 + γ (s)
for all s ≥ 0, (4)

µ′

1(s) > 0 for all s ≥ 0, and γ ′(s) > 0 for all s ≥ sM . �

Remark 1. If µ′(s) < 0 for all s > sM (which holds for (2)), and
sin > sM , and the dilution rate D is a constant D ∈ (µ(sin), µ(sM))
⊆ (0, ∞), then the system (1) has a locally unstable positive equi-
librium point of the form (s∗, sin − s∗) and the locally stable equi-
librium (sin, 0), where s∗ ∈ (sM , sin) and D = µ(s∗). Our work
(Mazenc et al., 2013) globally stabilized an equilibrium that can be
locally exponentially stabilized by a constant dilution rate. �

To explain our sampling control goals, fix any two constants
ϵ1 > 0 and ϵ2 > 0 such that ϵ2 > ϵ1, and let {ti} be a sequence of
real numbers such that 0 < ϵ1 ≤ ti+1 − ti ≤ ϵ2 for all i ∈ N ∪ {0},
where t0 = 0 and N = {1, 2, . . .}. Given any constant τf ≥ 0, we
define the function τ as follows:

τ(t) =


τf , t ∈ [0, τf )
τf + t − tj, t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0.

This isreminiscent of the representation of sampling in Fridman,
Seuret, and Richard (2004). For all j ≥ 0 and t ∈ [tj + τf , tj+1 + τf ),
we have t − τ(t) = t − (τf + t − tj) = tj − τf , so t − τ(t) is
piecewise constant. In the special case where τf = 0, we also have
t − τ(t) = tj for all t ∈ [tj, tj+1) and j ≥ 0.

Moreover, for all t ≥ 0, we have
0 ≤ τ(t) ≤ τM , where τM = 2τf + ϵ2. (5)
We assume that s(t − τ(t)) is the only available measurement.
Our control D will be computed in terms of the delayed sampled
values s(t − τ(t)) of the substrate, so when τf = 0, the control
values will be computed from the sequence of observations {s(tj)}
at the sample times; see (12). When µ is known, our goal is
asymptotic stabilization of E∗ = (s∗, sin − s∗) for any constant
s∗ ∈ (0, sin), using our positive valued dilution rate feedback. Then
the components of E∗ are positive, and E∗ is an equilibrium of (1) if
and only if D takes the value µ(s∗) when s = s∗.
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