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a b s t r a c t

Despite the presence of discrete actuators in many industrial processes, model predictive control (MPC)
theory typically considers only continuous actuators, which requires discrete decisions to be removed
from theMPC layer. However, if discrete inputs are chosen optimally, process performancemay be greatly
improved, and thus, discrete decisions should be treated directly inMPC theory. In this paper, we develop
the idea that discrete actuators can be added to MPC theory without major modification, i.e., results
established with sufficient generality for standard MPCwith continuous actuators hold also for MPC with
discrete actuators. First, we show that standard exponential stability for suboptimalMPC can be extended
without modification to cover discrete actuators by avoiding restrictive assumptions about the geometry
of the control set. Then, we prove stability results for tracking MPC applied to a time-varying periodic
system. Finally, we demonstrate these results with two example systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete-valued actuators appear in nearly all large-scale indus-
trial processes. The earlyMPC literature focused almost exclusively
on continuous actuators, however, due in part to the computa-
tional burden imposed by discrete decision variables (García, Prett,
& Morari, 1989; Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings
& Mayne, 2009). In industrial practice, the discrete decisions are
always removed from the MPC control layer and instead made at a
different layer of the automation system using heuristics or other
logical rules. However, with advances in computer performance
and optimization software, it is now possible to include the dis-
crete actuators within the control problem. We therefore wish to
extend MPC theory to cover the case of mixed continuous/discrete
actuators.

Within the literature, systems with both continuous and
discrete actuators are sometimes referred to as ‘‘hybrid’’ systems
(Bemporad & Morari, 1999; Camacho, Ramirez, Limon, de la Peña,
& Alamo, 2010; Kobayshi, Shein, & Hiraishi, 2014). However, the
term hybrid system is also often applied to systems without

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Tongwen Chen
under the direction of Editor Ian R. Petersen.

E-mail address: risbeck@wisc.edu (M.J. Risbeck).

discrete actuators, e.g., when describing piecewise affine (Baotic,
Christophersen, & Morari, 2006; Borrelli, Baotić, Bemporad, &
Morari, 2005), or nonlinear switched systems (DeCarlo, Branicky,
Pettersson, & Lennartson, 2000; El-Farra & Christofides, 2003),
and when describing controllers that switch between multiple
modes (Mhaskar, El-Farra, & Christofides, 2004). Here we reserve
the term hybrid system for systems possessing both discrete- and
continuous-time dynamics, e.g., as defined in Goebel, Sanfelice, and
Teel (2012). Such general hybrid systems pose a number of control
challenges (Sanfelice, 2013). In this paper, we restrict attention to
nonlinear discrete-time systems with mixed continuous/discrete
inputs. Note that this restricted class of systems does include
piecewise affine systems (with or without discrete actuators) and
switched systems.

Various results on stability of MPC with discrete actuators
have appeared in the literature. In Bemporad and Morari (1999),
convergence to the origin is shown for mixed-logical-dynamical
systems based on certain positive-definiteness restrictions for the
stage cost, although Lyapunov stability is not explicitly shown. For
piecewise affine systems, Baotic et al. (2006) establish asymptotic
stability for an infinite-horizon control law via Lyapunov function
arguments. In Di Cairano, Heemels, Lazar, and Bemporad (2014),
a hybrid Lyapunov function is directly embedded within the
optimal control problem, enforcing cost decrease as a hard
constraint. Boundedness of states can often be shown by treating
discretization of inputs as a disturbance and deriving error bounds
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with respect to the relaxed continuous-actuator system (Aguilera
& Quevedo, 2013; Kobayshi et al., 2014; Quevedo, Goodwin, &
De Doná, 2004). Finally, Picasso, Pancanti, Bemporad, and Bicchi
(2003) show asymptotic stability for open-loop stable linear
systems with only boundedness for open-loop unstable systems.
All of these results are concerned with stability of an equilibrium
point or steady state.

Discrete actuators are commonly used in industrial processes
to cycle a system through a desired periodic operation. For
constrained linear systems, a stabilizing MPC controller can be
constructed by choosing periodically time-varying terminal sets
as the maximum positive invariant sets for the unconstrained
periodic LQR (Gondhalekar & Jones, 2011). Control laws can
also be determined from a set of linear matrix inequalities
(Böhm, Raff, Reble, & Allgöwer, 2009), and this technique can be
generalized to nonlinear systems on bounded sets (Reble, Böhm, &
Allgöwer, 2009), although the approach is conservative. To handle
reachability issues and setpoint changes, a periodic tracking signal
can be found during online optimization (Limon et al., 2012).
For nonlinear systems, a terminal constraint can be employed
that requires the predicted trajectory to terminate on a periodic
reference trajectory (Falugi & Mayne, 2013).

For our chosen class of nonlinear discrete time systems with
mixed continuous/discrete inputs, the goal of this paper is to see
how far we can develop the following motivating idea.

Theorem 1 (Folk Theorem). Any result that holds for standard MPC
holds also for MPC with discrete actuators.

We will establish a sampling of precise versions of the folk
theorem while reusing standard MPC results. As we will discuss,
the key is to start with standardMPC results for continuous-valued
inputs that do not assume that the feasible input set has an interior.
Although from a historical perspective this requirement eliminates
the vast majority of previous MPC results, a sufficient body of
recent results exists to undertake this new development.

2. Results

2.1. Nominal stability of suboptimal MPC

The simplest MPC problem to consider is nominal stability of
an equilibrium point, which we assume without loss of generality
is the origin. Note that we subsume classic optimal MPC with the
form of suboptimal MPC to be defined here. The main motivation
for suboptimal MPC is to replace an intractable problem (global
solution of a nonconvex nonlinear program) with a tractable
problem that can be readily solved for real-time implementation
of the controller (Scokaert, Mayne, & Rawlings, 1999).

We reconsider a standard MPC result given in Pannocchia,
Rawlings, and Wright (2011). The discrete-time system is

x+
= f (x, u) (1)

in which x ∈ Rn and u ∈ Rm are the state and the input at a
given time, while x+

∈ Rn is the successor state. Both state and
input are subject to constraints x(k) ∈ X and u(k) ∈ U for all
k ∈ I≥0. As is standard in MPC, take an integer N (referred to
as the finite horizon) and an input sequence u of length N , u =

(u(0), u(1), . . . , u(N − 1)). Let φ(k; x,u) denote the solution of
(1) at time k for a given initial state x(0) = x. To define the MPC
problem we require the following three sets:

ZN := {(x,u) | u(k) ∈ U, φ(k; x,u) ∈ X
for all k ∈ I0:N−1, φ(N; x,u) ∈ Xf }

XN := {x ∈ Rn
| ∃u ∈ UN such that (x,u) ∈ ZN} (2)

UN(x) := {u | (x,u) ∈ ZN}, x ∈ XN

in which Xf ⊆ X is the terminal region. For any state (x,u) ∈

Rn
× UN , the cost function is

VN(x,u) :=

N−1
k=0

ℓ(φ(k; x,u), u(k)) + Vf (φ(N; x,u))

and one then has the standard finite horizon optimal control
problem

PN(x) : min
u

VN(x,u) s.t. u ∈ UN(x)

which is feasible for all x ∈ XN . Next comes a standard set of
assumptions that guarantee closed-loop stability.

Assumption 1. The functions f : Rn
× Rm

→ Rn, ℓ : Rn
× Rm

→

R≥0 and Vf : Rn
→ R≥0 are continuous, f (0, 0) = 0, ℓ(0, 0) = 0,

and Vf (0) = 0.

Assumption 2. The set U is compact and contains the origin. The
sets X and Xf are closed and contain the origin in their interiors,
Xf ⊆ X.

Assumption 3. For any x ∈ Xf , the set

κf (x) := {u ∈ U | f (x, u) ∈ Xf and Vf (f (x, u)) + ℓ(x, u) ≤ Vf (x)}

is nonempty.

Assumption 4. There exist positive constants a, a′

1, a
′

2, af and r̄ ,
such that the cost functions satisfy the inequalities

ℓ(x, u) ≥ a′

1|(x, u)|
a for all (x, u) ∈ X × U

VN(x,u) ≤ a′

2|(x,u)|a if |(x,u)| ≤ r̄
Vf (x) ≤ af |x|a for all x ∈ X.

Suboptimal MPC. Rather then solving PN(x) exactly, Pannocchia
et al. (2011) consider using any (unspecified) suboptimal algorithm
having the following properties. Define the set

Ur
N(x) := {u ∈ UN(x) | VN(x,u) ≤ Vf (x) if x ∈ rB}. (3)

Let u ∈ Ur
N(x) denote the (suboptimal) control sequence for the

initial state x, and let ũ denote awarm start for the successor initial
state x+

= f (x, u(0; x)), obtained from (x,u) by

ũ := (u(1; x), u(2; x), . . . , u(N − 1; x), uf ) (4)

in which uf ∈ κf (φ(N; x,u)) as defined in Assumption 3. We
observe that the warm start satisfies ũ ∈ UN(x+). Then, the
suboptimal input sequence for any given x+

∈ XN is defined as
any u+

∈ UN that satisfies:

u+
∈ UN(x+) (5a)

VN(x+,u+) ≤ VN(x+, ũ) (5b)

VN(x+,u+) ≤ Vf (x+) when x+
∈ rB (5c)

in which r is a positive scalar sufficiently small so that rB ⊆ Xf
(with B the unit ball in Rn).

The advantage of the suboptimal control algorithm is that,
instead of having to solve a general mixed-integer nonlinear
program to global optimality at each step, one need construct
only a new warm start as in (4) and can spend any remaining
computational time improving on the warm start. Note that if the
terminal control law is in explicit form, then u+ is readily obtained
by evaluating κf ; alternatively, u+ can be computed via solving P1,
i.e., a 1-stage optimization, which is typically much easier than the
full N-stage optimization.

Generating the initial input sequence u is the most computa-
tionally demanding step in the algorithm, but a suitable u could
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