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a b s t r a c t

We derive frequency-domain criteria for the convergence of linear iterative learning control (ILC) on
finite-time intervals that are less restrictive than existing ones in the literature. In particular, the former
can be used to establish the convergence of ILC in certain cases where the latter are violated. The results
cover ILC with non-causal filters and provide insights into the transient behaviors of the algorithm before
convergence. We also stipulate some practical rules under which ILC can be applied to a wider range of
applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The main application of iterative learning control (ILC) is to
improve the reference tracking performance of a system. In order
to reduce the tracking error, the control signal to the system is
adjusted in each iteration by using feedback information from
previous iterations. In effect, ILC finds an approximate system
inverse for a specific reference (Moore, Dahleh, & Bhattacharyya,
1989). An advantage of ILC is that it does not require an explicit
model of the transfer function or even linearity of the system for
finding the inverse. Instead, it often uses the actual system as
a part of the algorithm. ILC has found successful applications in
many different fields (Ahn, Chen, &Moore, 2007; Freeman, Rogers,
Hughes, Burridge, & Meadmore, 2012; Sörnmo, Bernhardsson,
Kröling, Gunnarsson, & Tenghamn, 2016), where accurate models
of the system and disturbances are difficult to obtain.

While the frequency domain is the preferred approach for
filter design and analysis of linear ILC (Wang, Ye, & Zhang, 2014),
the widely used convergence criterion applies, only to strictly
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monotone convergence of the algorithm (the 2-norm of the error
between the current control signal and its final value strictly
decreases in each iteration). Moreover, it is not theoretically clear
to what extent the frequency criterion is applicable to a practical
ILC system where each iteration runs only over a finite-time
interval and to ILC systems with non-causal filters. To motivate
this study, we demonstrate examples for which the ILC converges
but the classical frequency condition cannot provide any indication
of the convergence property. Our analysis gives an explanation for
this mode of convergence.

We extend the work of Norrlöf and Gunnarsson (2002) by
introducing a less conservative criterion, hence reducing the gap
between the existing time-domain and frequency-domain criteria.
We also provide an analysis of the transient behavior of the
algorithm, which proves useful when the convergence is not
monotone. The contributions of this article can be summarized as
follows:

• Analysis of ‘‘convergence on finite-time interval’’ motivated by
practical ILC where the trial length is finite.

• A less conservative frequency domain convergence criterion
than the one by Norrlöf and Gunnarsson (2002) is derived (see
Theorem 8)

inf
ρ>0

sup
ω

G(ρeiω)
 < 1.

The criterion is applicable to ILC systems with causal as well
as non-causal filters and for strictly monotone convergence
coincides with the classical result.
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Fig. 1. Block diagram of an iterative learning controller. Here, ỹ = y − Tr r .

• The connection between time-domain and frequency-domain
criteria is established in a rigorous manner using Toeplitz
operators.

• A frequency domain tool for understanding the transient
behavior of ILC – i.e., the wave of convergence/divergence – is
introduced.

• A strategy to limit the growth of the transient errors when the
convergence is not monotone is proposed.

1.1. Previous work

ILC is a two-dimensional process, in the sense that the dynamics
are indexed by both time and iteration variables (Kurek & Zaremba,
1993). A standard approach to analysis of linear and a certain class
of nonlinear ILC algorithms relies on the lifted-system framework,
i.e., considering a time series as a vector (Bristow, Tharayil, &
Alleyne, 2006). Norrlöf (2000) has extensively studied the theory
and applications of linear ILC. Time-domain criteria as well as a
classical frequency-domain criterion for the convergence of the
linear ILC algorithm have been derived by Norrlöf and Gunnarsson
(2002).

There have been many attempts to understand and improve
the convergence properties of the linear ILC. Longman and Huang
(2002) have noted that the algorithmmight practically diverge af-
ter an initial substantial decay of the tracking error. Elci, Longman,
Phan, Juang, and Ugoletti (2002) have introduced a non-causal fil-
ter, namely a zero-phase filter, in the algorithm to improve the
transient behavior. The transient properties of the convergence
have been studied in more detail by Longman and Huang (2002)
and Wang et al. (2014). Longman (2000) and Norrlöf and Gun-
narsson (2002) have commented on the potential convergence of
the algorithm despite a transient growth of the norm of the error,
i.e., when the classical frequency condition is not fulfilled.

1.2. Problem description

A general form of the discrete linear first-order ILC algorithm is

yj = Tr r + Tuuj (1)
ej = r − yj (2)

uj = Q

uj−1 + Lej−1


; (3)

see Norrlöf (2000). Here j ∈ Z≥0 is the iteration index, r, yj,
and ej ∈ ℓ2 are the reference, output, and tracking error signals,
respectively, uj ∈ ℓ2 is the control signal. The stable systems from
reference to output and control signal to output are denoted by
Tr and Tu, respectively, and Q and L are filters to be designed. The
choice of u0 is free. Fig. 1 depicts the ILC algorithm. Note that in
practice the trial length is finite, i.e., the system is stopped after N
samples and signal values at time n ∈ {0, . . . ,N − 1} are stored.
The filters Q and L do not need to be causal since they operate on
the signals of the previous iteration.

Let us define G(eiω) := Q (eiω)(1 − L(eiω)Tu(eiω)). The classical
sufficient condition for strictly monotone convergence of ILC
requires that (see for example Norrlöf & Gunnarsson, 2002)

|G(eiω)| < 1, ∀ω ∈ [0, 2π), (4)

where L(eiω), Tu(eiω), andQ (eiω) are the frequency representations
of the respective filters.

Given the definition of the ILC algorithm in (1)–(3) and the
fact that each iteration runs only over a finite-time interval, n ∈

{0, . . . ,N − 1}, our purpose is to find less restrictive conditions
for G that guarantee the convergence of the algorithm, i.e., that the
limits uj → u∞ and ej → e∞ exist for the finite trial length.

The rest of the article is organized as follows: In Section 2, we
present a motivating example for which the ILC converges but the
classical condition cannot provide any indication of the conver-
gence property. The iteration-domain dynamics for ILC are derived
in Section 3 before we delve into the issue of convergence. Sec-
tion 4 starts with a formal definition of convergence for iterative
procedures and states our convergence results. In Section 5, practi-
cal aspects concerning the transient behavior of ILC when the con-
vergence is non-monotone are discussed. We propose qualitative
measures that characterize the convergence, and discuss the gap
between the time- and frequency-domain criteria in Section 6. We
draw conclusions in Section 7. Additionally, a list of useful results
and definitions as the background is collected in the Appendix.

2. Motivating example

Let us consider the following transfer functions

Tu(s) =
1

(s + 1)(s2 + 0.8s + 16)
, Tr(s) = 0, (5)

Q (s) =
10

s + 10
, Ld(z) = 10k(1 − 0.9z−1)za. (6)

We discretize Tu(s) and filter Q (s) by the zero-order-hold (ZOH)
method (see Åström & Wittenmark, 1997) with sampling time
h = 0.1 s. Fig. 2 compares the time responses of the systems
corresponding to two ILC scenarios where in (1) k = 0.8, a = 5
(System I) and in scenario (2) k = 0.5, a = 8 (System II). After
discretization, Q is implemented as a zero-phase filter and hence
we get

G(eiω) = Qd(eiω)Qd(e−iω)

1 − Ld(eiω)Tud(eiω)


. (7)

In Fig. 3, the Bode plots for G(eiω) are illustrated. We see
that in both scenarios the condition |G(eiω)| < 1 is violated.
Nevertheless, System I appears to converge, at least for the time
region of interest, while System II does not. The Bode diagrams
corresponding to convergent and non-convergent scenarios may
seem counterintuitive at first glance since the onewith the highest
peak in the gain |G(eiω)| corresponds to the convergent case.

Our result in Theorem 8 explains the situation and says that if
there exists a ρ > 0 such that supω

G(ρeiω)
 < 1, then we have

convergence in the sense that u∞ and e∞ exist on the finite interval
[0, . . . ,N). In Fig. 4, where supω |G(ρeiω)| is plotted against ρ, it
can be seen that the curve for System I goes below 1 for some ρ
and thus the ILC algorithm converges.

3. Iteration-domain dynamics

In order to analyze the convergence of the ILC system (1)–(3),
we derive the dynamics of the system in the iteration domain.
Furthermore, to take into account the assumption of the finite-
time intervals, we define the truncated counterparts of the original
operators.

Define the truncation operator as

(Πkx)[n] =


x[n], n < k
0, otherwise. (8)

For an operator G : ℓ2 → ℓ2, we define the truncated operator

Ḡ := ΠN(I − Π0)GΠN(I − Π0), (9)
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