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This paper investigates identification of Wiener systems with quantized inputs and binary-valued output
observations. By parameterizing the static nonlinear function and incorporating both linear and nonlinear
parts, we begin by investigating system identifiability under the input and output constraints. Then a
three-step algorithm is proposed to estimate the unknown parameters by using the empirical measure,
input persistent patterns, and information on noise statistics. Convergence properties of the algorithm,

including strong convergence and mean-square convergence rate, are established. Furthermore, by
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of this paper.

selecting a suitable transformation matrix, the asymptotic efficiency of the algorithm is proved in terms of
the Cramér-Rao lower bound. Finally, numerical simulations are presented to illustrate the main results

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wiener systems are often used to describe nonlinear systems
in practice. Such systems are typically comprised of two blocks:
a linear dynamic system followed by a nonlinear static function.
Practical Wiener systems are exemplified by distillation columns
(Zhu, 1999), pH control processes (Kalafatis, Arifin, Wang, &
Cluett, 1995), and biological systems (Hunter & Korenberg, 1986).
Theoretically, some nonlinear systems, which are not of a Wiener
structure, may be represented or approximated by a multivariate
Wiener model (Boyd & Chua, 1985). Consequently, its study carries
profound theoretical and practical significance.

Identification of Wiener systems has drawn great attention and
experienced substantial advancement. Fundamental progress has
been achieved in methodology development, identification algo-
rithms, essential convergence properties, and applications (Chen

* The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Wei Xing Zheng
under the direction of Editor Torsten Séderstrom.

E-mail addresses: guojin@amss.ac.cn (J. Guo), lywang@wayne.edu (LY. Wang),
gyin@math.wayne.edu (G. Yin), ylzhao@amss.ac.cn (Y. Zhao), jif@iss.ac.cn
(J.-F. Zhang).

http://dx.doi.org/10.1016/j.automatica.2016.12.034
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

& Zhao, 2014; Giri & Bai, 2010; Greblicki, 1997; Hagenblad, Ljung,
& Wills, 2008; Wang & Ding, 2011; Wills, Schon, Ljung, & Nin-
ness, 2011; Zhu, 1999). Zhu (1999) extended an identification
method for multi-input single-output Wiener models and applied
it to identify two distillation columns. Hagenblad et al. (2008) em-
ployed the Maximum Likelihood (ML) method to identify Wiener
systems, and discussed efficient implementation issues for Wiener
systems under disturbances. Wang and Ding (2011) derived an
LS-type gradient-based iterative identification algorithm for
Wiener systems. Chen and Zhao (2014) used stochastic approxi-
mation algorithms with expanding truncation to identify Wiener
systems. Greblicki (1997) introduced a nonparametric approach to
Wiener system identification. Wills et al. (2011) developed a new
ML-based algorithm for identifying Hammerstein-Wiener models.
Giri and Bai (2010) summarized progress on identification meth-
ods of block-oriented nonlinear systems.

Along with the rapid advancement of sensor and communi-
cation technologies (Shen, Tan, Wang, Wang, & Lee, 2015; Xie &
Wang, 2014), system identification under binary-valued/quantized
observations has also drawn a lot of attention during the
past decade (Casini, Garulli, & Vicino, 2012; Godoy, Goodwin,
Agtiero, Marelli, & Wigren, 2011; Guo & Zhao, 2013; Wang, Yin,
Zhang, & Zhao, 2010; Wang, Zhang, & Yin, 2003; Wigren, 1998).
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Identification of Wiener systems under binary-valued/quantized
observations becomes naturally an interesting problem. Zhao,
Wang, Yin, and Zhang (2007) presented the first algorithm to this
problem. Under scaled full-rank periodic inputs and binary-valued
observations, Zhao et al. (2007) showed that the identification of
Wiener systems could be decomposed into a finite number of core
identification problems. The concept of joint identifiability of the
core problem was introduced to capture the essential conditions
under which a Wiener system could be identified with binary-
valued observations. A strongly convergent algorithm was con-
structed and proved to be asymptotically efficient for the core
identification problems, achieving asymptotic optimality in its
convergence rate. The idea and technique developed in Zhao et al.
(2007) has also been successfully applied to identification of Ham-
merstein systems with quantized observations (Zhao, Wang, Yin,
& Zhang, 2010).

However, commonly encountered inputs are not necessarily
periodic. Input signals often cannot be arbitrarily selected to
be periodic (Kang, Zhai, Liu, & Zhao, 2015; Ljung, 1987), and
in adaptive control the control input is adjusted in real time
and is usually non-periodic (Guo, 1993; He, Zhang, & Ge, 2014).
Under both quantized inputs and quantized output observations,
Guo, Wang, Yin, Zhao, and Zhang (2015) offered a constructive
method to identify finite impulse response (FIR) systems, in which
regressor sequences were classified into distinct pattern sets
according to their values. It was shown that input-output data
could be grouped, without losing any information, on the basis of
both quantized output observations and input regressor patterns
and used to derive an asymptotically efficient algorithm. This paper
extends this idea to identify Wiener systems under quantized
inputs and binary-valued output observations.

Different from the identification algorithms for linear systems
in Guo et al. (2015), identification of Wiener systems is more
complex, mainly because the internal variables between the linear
and nonlinear subsystems are unmeasured, making it hard to
identify the subsystems individually. In this paper, for identifiable
Wiener systems, a three-step identification algorithm is proposed.
The first step aims to estimate the output of the nonlinear
function by using empirical measures and organize its inputs
a finite number of possible values defined as the products of
basic persistent patterns and parameters of the linear dynamics.
Then the second step estimates the parameters of the nonlinear
function and its input values jointly. Finally, the third step
estimates the parameters of the linear dynamics. Under some
typical assumptions on system order, input persistent excitation,
and noise distribution functions, the algorithm is shown to be
strongly convergent and asymptotically efficient in terms of the
Cramér-Rao (CR) lower bound.

The rest of the paper is organized into the following sections.
Section 2 formulates the Wiener systems identification problem
with quantized inputs and binary-valued observations. System
identifiability under input and output quantization is discussed in
Section 3. A three-step identification algorithm is introduced in
Section 4 based on empirical measures, persistent patterns, rela-
tions between the linear and nonlinear subsystems. Section 5 es-
tablishes convergence properties of the algorithm, including strong
convergence, mean-square convergence rate, and asymptotic
efficiency. A numerical case study is presented in Section 6 to
demonstrate effectiveness of the algorithm and the convergence
properties. Finally, findings of the paper are summarized in Sec-
tion 7, together with remarks on some open issues.

2. Problem formulation

Consider a single-input-single-output discrete-time Wiener
system described by

Input Ue | Linear | Xk Static
dynamics nonlinearity
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Yk = H(xy, n) +di

where uy, X, and dy are the input, the intermediate variable, and the
system noise, respectively. H(-, n) : &y — R is a parameterized
static nonlinear function with domain £y C R and vector-valued
parameter 1 € £2, € R™. Both n and m are known. By defining the
regressor ¢ = [Uy, ..., Ux_ne1) and 6 = [ay, ..., a,]’, the linear
dynamics can be expressed compactly as x, = ¢,60. Here z’ denotes
the transpose of z € R'1*‘2 for a vector or matrix.

The system structure is shown in Fig. 1, in which the input v is
quantized and takes a finite number of possible values, 1, € U =
{1, ..., ur}. The output y; is measured by a binary sensor with a
finite threshold C € R, which can be represented by an indicator
function

s —I _ ]7 _Vk E C;
k= w=Cc = 10, otherwise.

(2)

Based on {uy} and {si}, this paper will first discuss the issue of iden-
tifiability, then design an algorithm to identify 8 and » for identi-
fiable systems, and finally establish key convergence properties of
the algorithm.

Assumption 2.1. Suppose that {d,} is a sequence of i.i.d. (indepen-
dent and identically distributed) random variables. The accumula-
tive distribution function F(-) of d; is invertible and the inverse
function denoted by F~'(.) is twice continuously differentiable.
The moment generating function of d; exists.

Remark 2.1. In this paper, the output quantizer is binary-valued
with the threshold C. For multi-threshold quantizers, the reader
is referred to Wang et al. (2010) in which a quasi-convex com-
bination technique was introduced to combine information from
different thresholds and to achieve asymptotic efficiency. For
more general quantizers, Wigren (1998) introduced a stochastic
gradient-based adaptive filtering algorithm. Its analysis method
with an associated differential equation may be useful for other
types of systems.

3. System identifiability

System identification addresses the fundamental issue: Un-
der what conditions, the parameters of a Wiener system can be
uniquely determined from its noise-free input-output observa-
tions? For identifiable systems, algorithms can then be developed
to estimate system parameters under noisy observations.

Suppose that u = {ug, k = 1,2,...} is an arbitrary input
sequence taking quantized values in U = {u1,..., i}. The
input u generates a regressor sequence {¢;} that takes values
in I = r" possible (row vector) patterns denoted by =
{m1, ..., m}. Pattern examples include 7; = [u1,..., K1, U1l
2 = [11, ..., 1, 2], ete.

For a given input sequence u and its corresponding regres-
sor sequence {¢;,,,..., ¢, )}, denote (N-dependent) N; =

N . .
Doy Iy j=mprd € L = {1,....1}. Thatis, {¢} . ..., ¢; ) con-
tains N; copies of the pattern ;.
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