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Abstract

In 1993, Y.M. Xie and G.P. Steven introduced an approach called evolutionary structural optimization (ESO). ESO is based on the sim-
ple idea that the optimal structure (maximum stiffness, minimum weight) can be produced by gradually removing the ineffectively used
material from the design domain. The design domain is constructed by the FE method, and furthermore, external loads and support con-
ditions are applied to the element model. Considering the engineering aspects, ESO seems to have some attractive features: the ESO
method is very simple to program via the FEA packages and requires a relatively small amount of FEA time. On the other hand, different
constraints cannot be added into the problem. In the ESO optimization the results supposedly approach truss-like, fully stressed topol-
ogies, which have the maximum stiffness with respect to the volume. Generally, these types of structures correspond to least-weight trusses.

Although ESO is not capable of handling general stress or displacement constraints, the design problems are often such that these con-
straints do not need to be included in the topology optimization, especially if the design optimization task is divided into two stages. In the
first stage, only the overall geometry is outlined, and for that reason, the actual constraints do not have to be activated. In the second stage,
the sizing optimization is performed. It can be concluded that ESO is well suited to solve the first stage optimization problems.

In some design problems it may occur that the structure cannot attain the fully stressed state because of geometrical constraints. It fol-
lows that the topology having the maximum stiffness with respect to the volume does not necessarily produce the least-weight structure
when the stress constraints are applied in the second stage optimization. The geometrical constraints may force some structural components
to be subject to a understressed state, i.e. to carry some ‘‘waste material’’. As a consequence, the aim of this paper was to study whether ESO
can be modified so that some geometrical constraints can be taken into account already in the first stage topology optimization. The mod-
ification was based on the assumption that if the stress level of otherwise understressed structural components can be increased during the
compliance-volume product minimization, a lighter topology may be obtained. This new approach, the multiobjective and fixed elements
based modification of the evolutionary structural optimization (MESO) utilizes a new optimization objective in which the overall stiffness
of the structure and the loading of some parts of the structure are increased simultaneously. The gradient vector of the MESO objective
function was determined by the FE method. Some of the partial derivatives involved were first presolved and then approximated. This
approach was justified by large savings in the analysis time. Yet, MESO cannot take the general constraints into account.

To study the performance of the MESO optimization, two numerical examples were evaluated. The main purpose of these examples
was to study whether MESO can produce structures lighter than the ESO results for problems having both stress and geometrical
constraints.

These example were based on the two-stage optimization approach. In both example the MESO truss turned out to be lighter than the
corresponding ESO truss. However, the ESO truss was the stiffest one also having a smaller overall stress value. In the question of shallow
structures the deflection criteria may be predominant, and as a consequence, the ESO optimization may yield lighter structures than
MESO.
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1. Introduction

1.1. Structural optimization

Many elegant methods for structural optimization are
presented in the literature. Short surveys of this field can
be found in [47,27,41,46]. Structural optimization is often
divided into three classes: sizing, geometrical, and topology

optimization [36]. The differences between these classes can
be explained by a truss example:

In sizing optimization, the cross-sectional dimensions
can be chosen as the design variables. The values of
the design variables are not allowed to go to zero, in
other words, individual structural members cannot be
removed.
In geometrical optimization, the coordinates of the joints
can be chosen as the design variables.
In topology optimization, the number of structural mem-
bers and the connectivity of the members is optimized.

In the case of plate-type structures, the term shape or
fixed-topology optimization may be used instead of geomet-
rical optimization. In these cases, the boundary line of a
structure may be varied during the optimization process.
If additional holes are introduced into the structure, the
terms variable-topology and generalized shape optimization

may be used [17].
It should be noted that there may be cases in which the

above classification does not apply. The terminology con-
cerning the structural optimization classes also varies in
the literature. For simplicity, the optimization scheme
including all three classes of optimization is also called
topology optimization in this paper.

It is characteristic for sizing and geometrical optimization
that the topology of a structure cannot be altered during the
optimization process. When applying these methods, it is
not guaranteed that the structure obtained is the best or even
a good one: another initial topology might produce a
remarkably better solution for the minimization problem.
Since topology optimization also looks for the best overall
topology satisfying the problem constraints, the optimiza-
tion process cannot be misled as easily by a poor initial
guess. For this reason, only by using topology optimization
it is possible to produce the best overall structure.

1.2. Topology optimization

1.2.1. General

Topology optimization was pioneered by [26], who stud-
ied statically determinate trusses for a number of loading
and support conditions. His analytical results, so-called
Michell trusses, have an infinite number of members of
varying length. In Michell trusses, each bar is subject to a
constant strain (stress). It has also been analytically proved
that the Michell truss cannot have any greater compliance
to the given load than any other truss using the same

amount of material (for linearly elastic material compliance
equals twice the work done by the external forces or twice
the total strain energy of the structure) [40]. Since the
Michell trusses have an infinite number of structural com-
ponents, they are rather impractical in the engineering
applications.

In the 1960s, topology optimization was remarkably
improved when the so-called ground structure approach

was first introduced [12]. In the ground structure approach,
the design domain is formed by a finite number of truss
members, and each member is a potential part of the opti-
mal truss. By applying numerical optimization methods,
the additional bars can be removed from the design
domain, and as a result, the remaining truss members
represent the optimal topology.

Originally, ground structure problems were solved by
using direct optimization methods, i.e the mathematical

programming (MP) algorithms. However, they were, and
still are, inefficient in solving large optimization problems.
On the other hand, the MP algorithms are well suited for
handling all kinds of objective functions and constraints.
To solve a realistic optimization problem a rather large
design domain has to be employed, and consequently, the
MP algorithms may limit the use of the ground structure
approach. Instead of the MP algorithms, indirect optimiza-
tion methods, i.e. optimality criteria (OC) algorithms, can
be employed to solve structural problems. In the OC opti-
mization, it is necessary to determine an appropriate crite-
rion on which the optimality of the solution is based. The
criterion may be related, for instance, to the structural
stresses: it is often assumed that for the least-weight truss
each bar is subject to the corresponding allowable stress
value. The approach based on the above criteria is also
called the fully stressed design (FSD) method [14]. In the
fully stressed state each structural component is subject
to its maximum/minimum allowable stress value. The
allowable stress values may be different for each compo-
nent. The allowable stresses may also be different in tension
and compression, if, for instance, buckling is considered. If
the limiting stresses are equal for every structural compo-
nent, the resulting FSD structure is also equally stressed.
Most often in the literature, the equally stressed state is
also called fully stressed. Typically, the OC algorithms
consist of consecutive, iterative redesign loops, in order
to produce, for instance, a fully stressed state. Prager’s
contribution to the OC-based topology optimization, start-
ing from the late 1960s, should be especially acknowledged
[30]. Compared with the MP algorithms, the OC methods
are efficient in large optimization problems, but lack gener-
ality in various kinds of minimization problems. OC algo-
rithms are also discussed by Save and Prager [40].

Topology optimization of trusses using both MP and
OC algorithms is studied, for instance, in [29,33,37–39].

In the literature, topology optimization is most often
applied to truss ground structures based design domains.
However, optimization procedures have been developed
to deal with general layout optimization problems in which
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