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a b s t r a c t

The main purpose of this work is to provide new fractional pseudospectral methods for solving fractional
optimal control problems (FOCPs). We develop differential and integral fractional pseudospectral
methods and prove the equivalence between them from the distinctive perspective of Caputo fractional
Birkhoff interpolation. As a result, the present work establishes a new unified framework for solving
fractional optimal control problems using fractional pseudospectral methods, which can be viewed as
an extension of existing frameworks. Furthermore, we provide exact, efficient, and stable approaches to
compute the associated fractional pseudospectral differentiation/integration matrices even at millions of
Jacobi-type points. Numerical results on two benchmark FOCPs including a fractional bang–bang problem
demonstrate the performance of the proposed methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional optimal control problems (FOCPs) can be regarded
as a generalization of classical integer optimal control problems
(IOCPs) in the sense that the dynamics are described by fractional
differential equations (Agrawal, 2004). There are various defini-
tions of fractional derivatives and the two most important types
are the Riemann–Liouville derivatives and the Caputo derivatives.
It is noteworthy here that in distinct contrast with the integer
derivatives (which are locally defined in the epsilon neighborhood
of a chosen point), the fractional derivatives are nonlocal in na-
ture as they are globally defined by a definite fractional integral
over a domain. Moreover, the fractional derivatives involve sin-
gular kernel/weight functions, and the solutions of fractional dif-
ferential equations are usually singular near the boundaries of the
domain (Chen, Shen, & Wang, 2016). More background informa-
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tion on the fractional calculus can be found in Oldham and Spanier
(2006) and Sabatier, Agrawal, and Tenreiro Machado (2007).

Because of the complexity of most applications, FOCPs/IOCPs
are often solved numerically. In recent years, a class of numerical
methods called pseudospectral methods (Elnagar, Kazemi, &
Razzaghi, 1995; Fahroo & Ross, 2001; Benson, Huntington,
Thorvaldsen, & Rao, 2006; Huntington, 2007; Garg et al., 2010,
2011; Francolin, Benson, Hager, & Rao, 2015) has become
increasingly popular in the numerical solution of IOCPs. The
basic principle of pseudospectral methods is to approximate the
state using a set of basis functions and discretize the dynamic
constraints using collocation at a specified set of points. As a result,
a continuous optimal control problem is transcribed to a finite-
dimensional nonlinear programming problem (NLP) which is then
solved using well-known optimization software such as SNOPT
(Gill, Murray, & Saunders, 2005) and IPOPT (Biegler & Zavala,
2009). The basis functions are typically Lagrange interpolating
polynomials and the collocation points are usually chosen based
onGaussian-type quadrature rules. Basically there are two primary
implementation forms for pseudospectral methods: differential
and integral. Although differential and integral pseudospectral
methods are quite different, recentwork (Tang, Liu, &Hu, 2016) has
shown that they are equivalent for collocation at the Jacobi–Gauss
(JG) and flipped Jacobi–Gauss–Radau (FJGR) points. Inspired by the
aforementioned global property of the fractional derivatives and
the fact of IOCPs being special cases of FOCPs, the first author
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has recently proposed the notion of fractional pseudospectral
integration matrices (FPIMs) and developed integral fractional
pseudospectral methods for solving FOCPs (Tang, Liu, & Wang,
2015). However, to the best of our knowledge, differential
fractional pseudospectral methods for solving FOCPs have not yet
received attention.Moreover, a relevant question that comes along
is: does the equivalence between classical pseudospectralmethods
(Tang et al., 2016) still hold for fractional pseudospectral methods?

The aim of this paper is to develop new fractional pseudospec-
tral methods and to prove the equivalence between them via a
suitable Birkhoff interpolation. The present work is strikingly dif-
ferent from our previous work (Tang et al., 2015, 2016) in the
sense of pseudospectral scheme and Birkhoff interpolation, and
establishes a new unified framework for solving fractional optimal
control problems using fractional pseudospectral methods. Specif-
ically, the main contributions of this work are as follows:

(1) Wepropose thenotion of fractional pseudospectral differentia-
tionmatrices (FPDMs) and develop differential fractional pseu-
dospectral methods for solving FOCPs. Moreover, we propose
the notion of ε-FPIMs by employing the basis of weighted La-
grange interpolating functions (Weideman & Reddy, 2000).

(2) We take a distinctive route to prove the equivalence between
the proposed fractional pseudospectral methods from the
perspective of Caputo fractional Birkhoff interpolation.

(3) We provide exact, efficient, and stable approaches to compute
FPDMs/ε-FPIMs even at millions of Jacobi-type points.

(4) We extend the framework of Garg et al. (2010) to fractional
pseudospectral methods with collocation at the Jacobi-type
points, and that of Tang et al. (2015) to containing differential
fractional pseudospectral methods.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are presented for subsequent developments. In
Section 3, the definitions and computation of FPDMs are presented.
This is followed by the definitions and computation of ε-FPIMs in
Section 4. The detailed implementation of differential fractional
pseudospectral methods is provided in Section 5. In Section 6,
the equivalence mentioned above is proved by using the Caputo
fractional Birkhoff interpolation. In Section 7, some comments on
fractional pseudospectral methods are made. Numerical results on
two benchmark FOCPs are shown in Section 8. Finally, Section 9 is
for some concluding remarks.

2. Some preliminaries

In this section, we present the definitions of the Riemann–
Liouville fractional integrals and the Caputo fractional derivatives.

Definition 1 (Kilbas, Srivastava, & Trujillo, 2006). The left and right
Riemann–Liouville fractional integrals of real order γ ≥ 0 of a
function h(t), t ∈ [t0, tf ] are defined, respectively, as
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where Γ (·) is the Gamma function. It is noteworthy here that for
γ ∈ N, the fractional integrals coincide with the usual iterated
integrals due to the well-known Cauchy’s integral formula.

Definition 2 (Kilbas et al., 2006). The left and right Caputo
fractional derivatives of real order γ ∈ (n − 1, n], n = ⌈γ ⌉ ∈ N of
a function h(t) ∈ ACn

[t0, tf ] are defined, respectively, as
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where ⌈γ ⌉ denotes the smallest integer greater than or equal to γ .
In particular, we have C

t0 D0
t h(t) =

C
t D0

tf h(t) = h(t).

3. Definitions and computation of FPDMs

In this section, the definitions and computation of FPDMs are
presented.

3.1. Definitions of FPDMs

Definition 3. The left and right FPDMs of real order γ ∈ (0, 1] for
the JG points of {τi ∈ (−1, +1)}Ni=1 with −1 = τ0 < τ1 < · · · <
τN+1 = +1 are defined, respectively, as

τ
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where {L⋆
i (τ ) ∈ PN}

N
i=0 and {LĎ

i (τ ) ∈ PN}
N+1
i=1 are the Nth-

order Lagrange interpolating polynomials associated with the
interpolating points {τi}

N
i=0 and {τi}

N+1
i=1 , respectively, defined as
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where PN denotes the set of all polynomials of degree ≤ N .
Moreover, let {Li(τ ) ∈ PN−1}

N
i=1 be the (N − 1)th-order Lagrange

interpolating polynomials associated with the interpolating points
{τi}

N
i=1, defined as

Li(τ ) ,

N
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, i = 1, 2, . . . ,N. (5)

Then from Eqs. (4) and (5), we have

L⋆
i (τ ) =

τ − τ0

τi − τ0
· Li(τ ), i = 1, 2, . . . ,N, (6a)

LĎ
i (τ ) =

τN+1 − τ
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Note that Eq. (6a) has already been given in Tang et al. (2016,
Eq. (11)).

Definition 4. The left FPDM of real order γ ∈ (0, 1] for the FJGR
points of {τ̂i ∈ (−1, +1]}Ni=1 with −1 = τ̂0 < τ̂1 < · · · <
τ̂N = +1, and the right FPDM of real order γ ∈ (0, 1] for the
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