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a b s t r a c t

This paper considers the state estimation problem for discrete-time nonlinear stochastic coupling net-
works. A non-augmented filter is designed for each node to guarantee an optimized upper bound on the
state estimation error covariance matrix despite nodes coupling as well as the linearization errors. Com-
pared with the existing augmented filter, the cross-covariance matrices between coupling nodes are not
required to be computed and the gain matrix can be obtained separately for each node by solving two
Riccati-like difference equations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

State estimation for complex networks has beenwidely studied
in the theoretical research community and successfully applied in
industry (Ata-ur-Rehman, Lyudmila, & Jonathon, 2016; Zia, Tucker,
& Frank, 2005) This is partly due to the fact that state estimation is
crucial not only because it helps understand the intrinsic structure
of the networks but also because it is the first step to realize
synchronization (Rodriguez-Angeles & Nijmeijer, 2004).

Compared with the state estimation for an isolated node, the
state estimation problem for complex networks becomes more
difficult due to the nodes coupling. Specifically, the states of the
nodes are not only determined by themselves but also by their
neighbors. To overcome this difficulty, many strategies have been
proposed to develop filters for complex networks including uncer-
tain stochastic complex networkswithmissingmeasurements and
time-varying delay (Liang, Wang, & Liu, 2009; Liang, Wang, Liu, &
Liu, 2014), H∞ filters with uncertain coupling strength and incom-
plete measurements (Shen, Wang, Ding, & Shu, 2013; Shen, Wang,
& Liu, 2011), uncertain complex networks with time-varying de-
lays (Ding, Wang, Shen, & Shu, 2012), and time-varying com-
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plex networks with missing measurements (Hu, Wang, Liu, & Gao,
2016). It should be pointed out that all the existing work focus on
developing filters using the augmented approach, i.e., all the state
estimation errors of the nodes are formulated in a compact form
and the gain matrices for all nodes are obtained simultaneously
with respect to the overall covariance matrix of the estimation er-
rors. Thus, the disadvantage of the augmented filters is that high
computational cost is often required for large number of nodes.

In this paper, we attempt to develop a non-augmented filter
for a class of discrete-time nonlinear stochastic coupling networks.
By using the structure of the extended Kalman filter (EKF), a
novel filter is developed by proposing the predicted and updated
estimation error systems. To address the coupling features and the
linearization errors, upper bound matrices are introduced for the
corresponding covariance matrices so that the gain matrices can
be derived by minimizing the trace of the upper bound matrix. A
distinct feature of the proposed filter is that the cross-covariance
matrices between coupling node are not required to be computed
and the gain matrix can be derived separately for each node.

2. Problem statement

Consider the following nonlinear stochastic network

xi,k+1 = f (xi,k) +

N
j=1

ωijΓ xj,k + wi,k (1)

zi,k = h(xi,k) + vi,k, i = 1, 2, . . . ,N (2)
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where xi,k ∈ Rn is the state vector of the ith node and zi,k ∈ Rp is
the measurement vector of the ith node. f (·) and h(·) are known
nonlinear functions that are assumed to be twice continuously
differentiable. Γ is a matrix and W = [ωij]N×N is the coupling
configuration matrix with ωij ≥ 0. The process noise wi,k and the
measurement noise vi,k are assumed to be mutually uncorrelated
zero-mean white Gaussian with known covariance matrices Qi,k
and Ri,k, respectively.

The structure of the EKF is adopted to design the following filter
for the ith node

x̄i,k = f (x̂i,k) +

N
j=1

ωijΓ x̂j,k (3)

x̂i,k+1 = x̄i,k + Ki,k+1[zi,k+1 − h(x̄i,k)] (4)

where x̄i,k and x̂i,k+1 denote the predicted and the updated
estimates at time instant k + 1, respectively. Ki,k+1 is the gain
matrix to be determined for the ith node at time instant k+ 1. The
updated estimation error and its corresponding covariance matrix
are defined as

ei,k+1 = xi,k+1 − x̂i,k+1 (5)

Pi,k+1 = E{ei,k+1eTi,k+1}. (6)

The aim of this paper is to design a filter described by (3)–(4), such
that there exists a sequence of positive-definite matrices Φi,k+1
satisfying
Pi,k+1 ≤ Φi,k+1. (7)
The bound Φi,k+1 is obtained by solving a Riccati difference equa-
tion and the gain matrix Ki,k+1 is derived by minimizing the trace
of the upper bound matrix Φi,k+1 at each time instant. It should be
pointed out that the notation X ≥ Y (respectively, X > Y ) means
that X−Y is positive semidefinite in the sense of the corresponding
quadratic forms (respectively, positive definite).

Remark 1. In Hu et al. (2016), the augmented approach has been
used to derive the state estimation of the stochastic complex
networks (1)–(2) with missing measurements. To be specific, the
augmented estimation errors of all nodes and the corresponding
covariance matrix are defined as

ẽk+1 = [eT1,k+1, . . . , e
T
N,k+1]

T (8)

P̃k+1 = E{ẽk+1ẽTk+1}. (9)

The filter is designed by defining a sequence of positive-definite
matrices Φ̃k+1 satisfying

P̃k+1 ≤ Φ̃k+1. (10)

The gain matrix is derived by minimizing the trace of the upper
bound matrix Φ̃k+1 at each time instant. It can be seen that the
dimension of the matrix Φ̃k+1 becomes larger as the number of
the nodes increases and therefore high computational costs are
often required to derive the gain matrix by using the augmented
approach.

3. Non-augmented filter

The following lemma is adopted from the literature to derive
the non-augmented filter.

Lemma 1 (Xie, Soh, & Souza, 1994).Givenmatrices A, B, C andDwith
appropriate dimensions such that CCT

≤ I . Let U be a symmetric
positive definite matrix and a > 0 be an arbitrary positive constant
such that a−1I − DUDT > 0. Then the following inequality holds

(A + BCD)U(A + BCD)T

≤ A(U−1
− aDTD)−1AT

+ a−1BBT . (11)

Now, we define the predicted estimation error and its covari-
ance matrix

ēi,k = xi,k+1 − x̄i,k (12)

P̄i,k = E{ēi,kēTi,k}. (13)

As shown in Hu et al. (2016), by using the Taylor series expan-
sion technique, the predicted estimation error and the updated es-
timation error can be represented as follows

ēi,k = (Fi,k + Lfi,kΩ
f
i,k)ei,k +

N
j=1

ωijΓ ej,k + wi,k (14)

ei,k+1 = (I − Ki,k+1Hi,k+1 − Ki,k+1Lhi,kΩ
h
i,k)ēi,k

− Ki,k+1vi,k+1 (15)

where Fi,k =
∂ f (x)
∂x |x=x̂i,k and Hi,k+1 =

∂h(x)
∂x |x=x̄i,k . L

f
i,k and Lhi,k are

problem-dependent scaling matrices. Ω f
i,k and Ωh

i,k denote the un-
known time-varying matrix accounting for the linearization er-
rors satisfying Ω

f
i,k(Ω

f
i,k)

T
≤ I and Ωh

i,k(Ω
h
i,k)

T
≤ I , respectively

(Giuseppe, 2005). In this paper, as in Giuseppe (2005), the scal-
ing matrices Lfi,k and Lhi,k are employed to account for the lineariza-
tion errors. For more details we refer the reader to Appendix C of
Giuseppe (2005).

Then, the predicted estimation error covariance can be derived
with respect to (14)

P̄i,k = (Fi,k + Lfi,kΩ
f
i,k)Pi,k(Fi,k + Lfi,kΩ

f
i,k)

T
+ Qi,k

+

N
j=1

ωijE{(Fi,k + Lfi,kΩ
f
i,k)ei,ke

T
j,kΓ

T

+ Γ ej,keTi,k(Fi,k + Lfi,kΩ
f
i,k)

T
}

+

N
j=1

N
l=1

ωijωilE{Γ ej,keTl,kΓ
T
}. (16)

By using the inequality xyT +yxT ≤ xxT +yyT , an upper bounded
matrix can be derived for the third term on the right hand side of
(16)

N
j=1

ωijE{(Fi,k + Lfi,kΩ
f
i,k)ei,ke

T
j,kΓ

T

+ Γ ej,keTi,k(Fi,k + Lfi,kΩ
f
i,k)

T
}

≤

N
j=1

ωij[(Fi,k + Lfi,kΩ
f
i,k)Pi,k(Fi,k + Lfi,kΩ

f
i,k)

T

+ Γ Pj,kΓ T
]

= ω̄i(Fi,k + Lfi,kΩ
f
i,k)Pi,k(Fi,k + Lfi,kΩ

f
i,k)

T

+

N
j=1

ωijΓ Pj,kΓ T (17)

where ω̄i =
N

j=1 ωij.
Similarly, an upper bounded matrix can be derived for the

fourth term on the right hand side of (16)
N
j=1

N
l=1

ωijωilE{Γ ej,keTl,kΓ
T
}

≤
1
2

N
j=1

N
l=1

ωijωil(Γ Pj,kΓ T
+ Γ Pl,kΓ T )

= ω̄i

N
j=1

ωijΓ Pj,kΓ T . (18)
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