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a b s t r a c t

This article presents basic concepts and recent research directions about the stability of sampled-data
systems with aperiodic sampling. We focus mainly on the stability problem for systems with arbitrary
time-varying sampling intervals which has been addressed in several areas of research in Control Theory.
Systems with aperiodic sampling can be seen as time-delay systems, hybrid systems, Input/Output
interconnections, discrete-time systems with time-varying parameters, etc. The goal of the article is to
provide a structural overview of the progress made on the stability analysis problem. Without being
exhaustive, which would be neither possible nor useful, we try to bring together results from diverse
communities and present them in a unified manner. For each of the existing approaches, the basic
concepts, fundamental results, converse stability theorems (when available), and relations with the other
approaches are discussed in detail. Results concerning extensions of Lyapunov and frequency domain
methods for systems with aperiodic sampling are recalled, as they allow to derive constructive stability
conditions. Furthermore, numerical criteria are presented while indicating the sources of conservatism,
the problems that remain open and the possible directions of improvement. At last, some emerging
research directions, such as the design of stabilizing sampling sequences, are briefly discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade haswitnessed an enormous interest in the study
of networked and embedded control systems (Chen, Johansson,
Olariu, Paschalidis, & Stojmenovic, 2011; Hespanha, Naghshtabrizi,
& Xu, 2007; Hristu-Varsakelis & Levine, 2005; Zhang, Branicky,
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& Phillips, 2001). This interest is mainly due to the ubiquitous
presence of embedded controllers in relevant application domains
and the growing demand in industry on systematic methods to
model, analyse and design systems where sensor and control
data are transmitted over a digital communication channel.
The study of systems with aperiodic sampling emerged as a
modelling abstraction which allows to understand the behaviour
of Networked Control Systems (NCS) with sampling jitters,
packet drop-outs or fluctuations due to the inter-action between
control algorithms and real-time scheduling protocols (Antsaklis
& Baillieul, 2007; Astolfi, Nesic, & Teel, 2008; Zhang et al., 2001).
With the emergence of event-based and self-triggered control
techniques (Årzén, 1999; Åström & Bernhardsson, 1999; Heemels,
Johansson, & Tabuada, 2012; Velasco, Fuertes, & Marti, 2003), the
study of aperiodic sampled-data systems constitutes nowadays a
very popular research topic in control. In this survey, we focus
on questions arising in the control of systems with arbitrary
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time-varying sampling intervals. Important practical questions
such as the choice of the sampling frequency, the evaluation of
necessary computational and energetic resources or the robust
control synthesis aremainly related to stability issues. These issues
often lead to the problem of estimating the Maximum Sampling
Interval (MSI) forwhich the stability of a closed-loop sampled-data
system is ensured.

The study of aperiodic sampled-data systems has been ad-
dressed in several areas of research in Control Theory. Systems
with aperiodic sampling can be seen as particular time-delay sys-
tems. Sampled-and-hold in control and sensor signals can be mod-
elled using hybrid systems with impulsive dynamics. Aperiodic
sampled-data systems have also been studied in the discrete-
time domain. In particular, Linear Time Invariant (LTI) sampled-
data systems with aperiodic sampling have been analysed using
discrete-time Linear Parameter Varying (LPV) models. The effect of
sampling can be modelled using operators and the stability prob-
lem can be addressed in the framework of Input/Output inter-
connections as typically done in modern Robust Control. While
significant advances on this subject have been presented in the
literature, problems related to both the fundamentals of such
systems and the derivation of constructive methods for stability
analysis remain open, even for the case of linear system. The objec-
tive of the article is to present in a unified and structured manner
a collection of significant results on this topic.

The core of the article is dedicated to the analysis of systems
with arbitrary varying sampling intervals. We will only consider
the deterministic aspects of the problem. The case when sampling
intervals are random variables given by a probability distribution
will not be discussed here. After presenting some generalities
and motivations concerning sampled-data systems with aperiodic
sampling (in Section 2), some basic qualitative results are recalled
in Section 3. Section 4 presents the main stability analysis
approaches. At last, in Section 5, we briefly discuss some emerging
research problems, such as the design of stabilizing sampling
sequences. We indicate themain challenges, the relations with the
arbitrary sampling problem and some perspectives on which the
current approaches and tools for aperiodic sampled-data systems
may be useful in the future.
Notations: Throughout the paper, R+ denotes the set {λ ∈ R, λ ≥

0}, ∥x∥ represents any norm of the vector x and ∥x∥p , p ∈ N, the
p norm of a vector x. For a matrix M , MT denotes the transpose of
M andM⋆, its conjugate transpose. For square symmetric matrices
M, N , M ≽ N (resp. M ≻ N) means that M − N is a positive
(resp. definite positive)matrix. ∗, in a symmetricmatrix represents
elements thatmay be induced by symmetry. ∥M∥p , p ∈ N denotes
the induced p-norm of a matrix M . σ̄ (M) denotes the maximum
singular value ofM . C0(X, Y ), for twometric spaces X and Y , is the
set of continuous functions from X to Y . Ln

p(a, b), p ∈ N denotes
the space of functions φ : (a, b) → Rn with norm ∥φ∥Lp = b

a ∥φ(s)∥p ds
 1

p
, and Ln

2e[0, ∞) is the space of functions φ :

[0, ∞) → Rn which are square integrable on finite intervals.

2. Generalities

2.1. System configuration

In this paper we study the properties of sampled-data systems
consisting of a plant, a digital controller, and appropriate interface
elements. A general configuration of such a sampled-data system
is illustrated by the block diagram of Fig. 1. In this configuration,
y(t) is a continuous-time signal representing the plant output (the
plant variables that can bemeasured). This signal is represented as
a function of time t , y : R+ → Rp.

Fig. 1. Classical sampled-data system configuration.

The digital controller is usually implemented as an algorithm
on an embedded computer. It operates with a sampled version of
the plant output signal, {yk}k∈N, obtained upon the request of a
sampling trigger signal at discrete sampling instants tk and using
an analog-to-digital converter (the sampler block, S, in Fig. 1). This
trigger may represent a simple clock, as in the classical periodic
sampling paradigm, or a more complex scheduling protocol which
may take into account the sensor signal, a memory of its last
sampled values, etc. The sampling instants are described by a
monotone increasing sequence of positive real numbers σ =

{tk}k∈N where

t0 = 0, tk+1 − tk > 0, lim
k→∞

tk = ∞. (1)

The difference between two consecutive sampling times hk =

tk+1−tk is called the kth sampling interval. Assuming that the effect
of quantizers may be neglected, the sampled version of the plant
output is the sequence {yk}k∈N where yk = y(tk).

In a sampled-data control loop, the digital controller produces
a sequence of control values {uk}k∈N using the sampled version of
the plant output signal {yk}k∈N. This sequence is converted into a
continuous-time signal u(t), where u : R+ → Rm (corresponding
to the plant input) via a digital-to-analog interface. We consider
that the digital-to-analog interface is a zero-order hold (the hold
block, H , in Fig. 1). Furthermore, we assume that there is no delay
between the sampling instant tk and the moment the control uk
(obtained based on the kth plant output sample, yk) is effectively
implemented at the plant input. Then the input signal u(t) is a
piecewise constant signal u(t) = u(tk) = uk, ∀t ∈ [tk, tk+1).

In this survey, we will consider that the plant is modelled by a
finite dimensional ordinary differential equation of the form
ẋ = F (t, x, u) ,
y = H (t, x, u) ,

(2)

where x ∈ Rn represents the plant state-variable. Here F : R+ ×

Rn
× Rm

→ Rn with F(t, 0, 0) = 0, ∀t ≥ 0, and H : R+ × Rn
×

Rm
→ Rp. It is assumed that for each constant control and each

initial condition (t0, x0) ∈ R+ × Rn the function F describing the
plant model (2) is such that a unique solution exists for an interval
[t0, t0 + ϵ) with ϵ large enough with respect to the maximum
sampling interval. The discrete-time controller is considered to be
described by an ordinary difference equation of the form
xck+1 = F c

d


k, xck, yk


,

uk = Hc
d


k, xck, yk


,

(3)

where xck ∈ Rnc is the controller state. Here, F c
d : N × Rnc ×

Rp
→ Rn

c and Hc
d : N × Rnc × Rp

→ Rm. We will use
the denomination sampled-data system for the interconnection
between the continuous-time plant (2) with the discrete-time
controller (3) via the relations

yk = y(tk), u(t) = uk, ∀t ∈ [tk, tk+1), ∀k ∈ N, (4)

under a sequence of sampling instants σ = {tk}k∈N satisfying (1).
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