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a b s t r a c t

Inspired by a local version of the replicator dynamics, this work proposes a discrete-time distributed
algorithm that allows a connected group of nodes to dynamically achieve virus spreading minimization
subject to operational constraints. The proposed algorithm is distributed in the sense that it can be
implemented by network nodes via local and anonymous interactions. By employing a discrete-time
LaSalle invariance principle, we obtain a bound on the algorithm step size that guarantees asymptotic
convergence under time-varying interactions. The performance of themethod is illustrated on simulation
examples.

© 2016 Published by Elsevier Ltd.

1. Introduction

Virus spreading over computer and human networks is a
prevalent concern today, as it poses a threat to the security of
interconnected infrastructure and the well-being of the general
public. The implementation of strategies to stop epidemics can
especially be a challenge when networks are operated by multiple
managers who need to preserve the privacy and interest of their
constituents. These scenarios would benefit from the development
of distributed anonymous coordination algorithms that allow the
implementation of best responses in a robust way. Motivated by
this scenario, this manuscript proposes a novel algorithm that
can serve to resolve these issues for particular classes of network
graphs and resource constraints.

Literature review. There are several models of virus spread-
ing and contagion over networks (see e.g., Nowzari, Preciado,
& Pappas, 2015; Pastor-Satorras, Castellano, Van Mieghem, &
Vespignani, 2014 for surveys over virus models and control).
One canonical example is given by the SIS (susceptible–infected–
susceptible) model and its variations; see Ahn and Hassibi (2013),
Chakrabarti, Wang, Wang, Leskovec, and Faloutsos (2008), Peng,
Jin, and Shi (2010), Prakash, Tong, Valler, Faloutsos, and Falout-
sos (2010), Wang, Chakrabarti, Wang, and Faloutsos (2003), which
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present validation studies of such models for virus propaga-
tion over human and computer graphs. Based on this, two main
strategies have been proposed to handle such propagation in the
literature. One approach considers the detection and isolation
capabilities of the infected nodes by means of topology adapta-
tion or quarantine, while another one considers node immuniza-
tion. Along these lines, Enyioha, Preciado, and Pappas (2013) and
Tomovski andKocarev (2012) propose a distributed strategy toma-
nipulate the topology of the network by disconnecting infected
nodes. This solution does not consider the cost of disconnecting
the network or constraints on the network connectivity. In Wan,
Roy, and Saberi (2008), the authors propose a decentralized algo-
rithm to control the virus propagation by disconnecting nodes and
by applying an antivirus subject to resource constraints. The decen-
tralized algorithm of Wan et al. (2008) is based on the use of diag-
onal matrices in the control input, which are naturally distributed.
However, the algorithm that determines these diagonal matrices
is not distributed itself. Along the lines of Wan et al. (2008), the
authors in Torres, Roy, and Wan (2015) propose a sparse control
allocation of limited resources among a subset of network’s com-
ponents to minimize the dominant eigenvalue of a linear dynami-
cal process associated with the network. However, as in Wan et al.
(2008), the proposed algorithm is not distributed itself. A recent
formulation of the optimal vaccination for the case of continuous
time dynamics is given in Preciado, Zargham, Enyioha, Jadbabaie,
and Pappas (2014). In Preciado et al. (2014) the authors propose a
geometric programming framework to find the optimal allocation
of resources under local constraints, nonetheless, this solution is
neither distributed nor decentralized. Ideas of distributed control
have been commonly applied to distributed consensus algorithms
Bullo, Cortés, and Martínez (2009), Olfati-Saber, Fax, and Murray
(2006),where the central idea is to studywhether a group of agents
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in a network using local and anonymous information can reach a
global agreement. Similar in spirit to consensus algorithms, the lo-
cal replicator dynamics has been proposed in Pantoja, Quijano, and
Passino (2011), where it is applied to dynamic resource allocation.
The local replicator dynamics is a model where agents with local
communication capabilities tend to reach the same fitness using
simple interactions, while preserving the simplex invariant.

Statement of contributions. We study a virus spreading mini-
mization problem based on a general contagion dynamics model.
We characterize the optimal allocation solution to the virus prob-
lem by posing the problem objective as the minimization of the
spectral radius of the contagion-dynamics matrix subject to op-
erational constraints. By using the Perron–Frobenius theorem and
Lagrange multipliers theory, we obtain a novel characterization of
the critical points of the problem that applies to (not necessarily
symmetric) weight-balanced matrices. For other matrices, we give
bounds for the solution in terms of the associated symmetrized
problem. After this, we propose a discrete-time distributed algo-
rithm that implements the desired resource allocation for symmet-
ric matrices. In contrast with previous work, our algorithm can be
implemented under partial information by the network nodes by
means of local and anonymous interactions. More precisely, our
algorithm is based on a discretization of the local replicator dy-
namics that is further adapted to ensure convergence of the so-
lution to the virus mitigation problem, while satisfying resource
constraints. Using a novel discrete-time analysis, we are able to
provide a bound on the algorithm step size that guarantees conver-
gence for agents subject to time-varying interactions. Preliminary
statements of the results of this paper appeared in Ramírez and
Martínez (2014). Here, we include the final statements developed
in full technical details.

2. Preliminaries and notation

We denote by Rd
≥0 the positive orthant of Rd, for some d ∈

N, diag(a1, . . . , aN) the N × N matrix with entries ai along the
diagonal, IN the identity matrix of size N × N , and 1N ∈ RN the
column vector whose elements are all equal to one. The spectrum
of A is denoted by spec(A), an eigenvalue of A is denoted by λi(A) ∈

spec(A), its spectral radius by ρ(A) = maxi |λi(A)|, and the 2-norm
of A is denoted by ∥A∥. When we use inequalities for vectors, we
refer to componentwise inequalities.

A real square matrix A = [aij], A ∈ RN×N
≥0 , is called nonnegative,

if its entries are nonnegative, i.e., aij ≥ 0, for all i, j ∈ {1, . . . ,N}.
A directed graph of order N or digraph is a pair G = (V, E),
where V , the vertex set, is a set with N nodes, and E ⊂ V × V ,
the edge set, is a set of ordered pair of vertices called edges. We
denote the graph at time k as G(k)

= (V, E(k)) with edge set
E(k) ⊂ V ×V, k ∈ N. Given a digraph G, we define the unweighted
adjacency matrix of G by A(G) ∈ RN×N as aij = 1 if (i, j) ∈ E ,
and aij = 0 otherwise. Given a nonnegative matrix B ∈ RN×N , its
associatedweighted digraphG(B) is the graphwithV = {1, . . . ,N}

and edge set defined by the following relationship: (i, j) ∈ E(B)
if and only if bij > 0. The associated weight of the edge (i, j) is
given by the entry bij. The graph G(B) is said to be weight-balanced
if
N

j=1 bij =
N

j=1 bji for all i ∈ V , in particular, G(B) is undirected
if bij = bji for all (i, j) ∈ E . A pair of indices i, j ∈ V of an
undirected graph G = (V, E) are called neighbors if (i, j) ∈ E . We
let Ni(G) denote the set of neighbors of i in the digraph G. A path
in a graph is an ordered sequence of vertices such that any pair
of consecutive vertices in the sequence is an edge of the graph. A
graph is connected if there exists a path between any two vertices. If
a graph is not connected, then it is composed of multiple connected
components, that is, multiple connected subgraphs. In a connected
graph G, the distance from vertex i to vertex j, denoted as dist(i, j),
is the length (number of edges) of a shortest i–j path in G.

2.1. On the replicator dynamics

Replicator dynamics (Hofbauer & Sigmund, 1998; Taylor &
Jonker, 1978;Weibull, 1997)models the interaction of an homoge-
neous population, where fractions of individuals play a symmetric
game. From the biological point of view, it can be seen as mecha-
nism tomodel the behavior of a populationwhose individuals seek
habitats with different conditions to feed or reproduce. This dy-
namics is represented by a first-order differential equation, which
is composed by the replicator, its fitness, and the proportion in the
population. The replicator represents one individual in the entire
population. The fitness is the payoff that the individual gets during
the game. Finally, the proportion in the population corresponds to
the fraction of individuals in the population that changes as a re-
sult of their mutual interactions and fitnesses. A particular choice
of replicator dynamics is given by

ṗi(t) = pi(t)(fi − f̄ ), (1)

where pi denotes the proportion of population that play one strat-
egy i ∈ {1, . . . ,N}, fi : R → R is the fitness, and f̄ is the average
fitness described by f̄ =

N
j=1 pjfj. The choice of f̄ in (1) imposes a

useful restriction to the dynamics, as evolutions will belong to the
simplex ∆p = {p ∈ RN

>0 |
N

i=1 pi(t) = 1}. When the equilib-
rium point p∗

i > 0 for all i, then the steady state of (1) is achieved
when fi(p∗

i ) = f̄ (p∗), where p∗
= [p∗

1, . . . , p
∗

N ]. The properties of
(1) make it useful to solve distributed optimization problems sub-
ject to constraints like the virus problem we state in Section 3.

A local version of the original replicator dynamics in (1) is
proposed in Pantoja et al. (2011) to account for local interactions
of fractions of the population over a graph G. The local replicator
dynamics is given by

ṗi(t) = pi


fi

j∈Ni

pj −

j∈Ni

pjfj


, (2)

where Ni is the set of neighbors of i in the graph G. If the choice
of the fitness fi only depends on information of the neighbors and
itself, then the algorithm described in (2) is distributed. Moreover,
since (2) does not require the exchange of identities, it is said that it
accounts for anonymous interactions. The authors in Pantoja et al.
(2011) show that this algorithm conserves the most important
characteristics of (1), i.e., (i) the simplex is invariant, and (ii) the
equilibrium point is asymptotically stable in ∆p.

3. Problem statement and solution approach

This section introduces the contact network dynamics proposed
in Peng et al. (2010) and the problem statement given in
Wan et al. (2008). Next, we extend a theorem in Wan et al.
(2008) for symmetric, irreducible matrices to weight-balanced
and irreducible matrices. This extension is motivated by the
possibility of having an asymmetric placement of edge isolation
(e.g., quarantine or firewalls) making the interaction graph
directed. Our proof relies on the Lagrange multiplier approach
and the Perron–Frobenius theorem, instead of using a sensitivity
formula. Finally, we propose a strategy for the minimization of
the virus spread over a network such that minimizes the Perron
eigenvalue of the symmetrized counterpart for any nonnegative
matrix, and we characterize the goodness of this approximation.

3.1. Problem statement

The virus dynamics over a network proposed in Peng et al.
(2010) is given by

x(k+1)
i =


1 −

N
j=1

(1 − ajix
(k)
j )

, (3)
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