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a b s t r a c t

The paper deals with sampled-data stabilization of continuous-time dynamics in strict-feedback form via
Immersion and Invariance. Starting from the characterization of the sampled-data target dynamics and its
invariant manifold, a multi-rate control law is designed to achieve attractiveness and invariance of such
a manifold. Simulations on an academic example and a practical case illustrate the performances.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilization of continuous-time (CT) strict-feedback dynamics
has been widely investigated in the last decades. Several method-
ologies have been proposed exploiting the connected cascade
structure. Among all, backstepping is certainly the most popular
one and involves an iterative top-down Lyapunov-based proce-
dure to compute the controller (Kokotović & Arcak, 2001). Strict-
feedback structures can be assumed in a purely discrete-time (DT)
context as well and similar top-down constructive procedures can
be carried out for the design. However, several difficulties arise for
the computation of the control solutions as they are only implicitly
defined by nonlinear algebraic equations.

This last issue can be overcome in the sampled-data (SD)
context where the discrete-time model represents the evolutions,
at the sampling times, of the system under the action of piecewise
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constant control over the sampling intervals (Monaco & Normand-
Cyrot, 2001). In that case, the strict-feedback structure is lost but,
as it will be clarified in the sequel, the SD equivalentmodel inherits
a nested structure which is useful for the design.

Several contributions discuss backstepping-like methods for
SD dynamics (Burlion, Ahmed-Ali, & Lamnabhi-Lagarrigue, 2006;
Nešić & Grüne, 2005; Postoyan, Ahmed-Ali, Burlion, & Lamnabhi-
Lagarrigue, 2008). A SD Lyapunov-based adaptive control strategy
was proposed in Postoyan et al. (2008) by exploiting the triangular
structure. In a recentwork by Tanasa,Monaco, andNormand-Cyrot
(2016) Input-Lyapunov-Matching (ILM) was employed to design a
multi-rate backstepping stabilizing controller.

Immersion and Invariance (I&I) has been introduced in
continuous time as an alternative tool for nonlinear stabilization
(Astolfi, Karagiannis, & Ortega, 2008; Astolfi & Ortega, 2003).
It relies on the idea of driving the trajectories of a nonlinear
system towards the ones of an a-priori defined stable target
dynamics while preserving their boundedness. Such an approach
qualifies for its robustness with respect to higher order dynamics,
applicability to real cases and simplicity, as illustrated in several
practical domains (Mannarino &Mantegazza, 2014; Rabai, Mnasri,
Khaled, &Gasmi, 2013). A first extension to nonlinear discrete-time
systems in strict-feedback formwas provided by Yalcin and Astolfi
(2011).

How to preserve I&I stabilization under digital control remains
a challenging problem. In Mattei, Monaco, and Normand-Cyrot
(2015), assuming part of the continuous-time dynamics stable,
the sampled-data controller stretching the dynamics onto the
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associated continuous-timemanifold guarantees its attractiveness
and thus I&I stabilization.

In the present paper, we discuss the same problem for systems
in strict-feedback form. In doing so, one has to keep in mind that
the strict-feedback structure is lost under sampling and that the
implementation of a piecewise constant controller via emulation
of the continuous-time one is not satisfactory. Under the usual
assumptions set on strict-feedback dynamics, we show that I&I
stabilizability under sampling can be preserved by adequately
redefining a sampled-data target system and its associated
invariant manifold (both parameterized by the sampling period).
The stabilizing design is then carried out via multi-rate feedback
strategies of order equal to the number of cascade connections.
This is first detailed for strict-feedback systems with two-cascade
connections while the extension to the case of m cascades is
sketched as it follows the same lines. Preliminary results on the
one-cascade case are in Mattioni, Monaco, and Normand-Cyrot
(2015b).

In conclusion, it is shown that the existence of a CT-I&I control
for systems in strict-feedback form is sufficient to guarantee the
existence of am-rate SD-I&I feedback. The proof is constructive and
the control solution admits an expansion in powers of the sampling
period. In practice, only approximate solutions can be computed
and implemented so affecting the overall performances. The
stability properties of the closed-loop system under approximate
controllers are discussedwith respect to the length of the sampling
period.

The paper is organized as follows. After some recalls and
introductory concepts in Section 2, the main results are discussed
in Sections 3 and 4. Constructive aspects and extensions are
detailed in Section 5. In Section 6, examples and simulations are
carried out.

2. Recalls and basic facts

2.1. Assumptions and notations

Maps and vector fields are assumed smooth (i.e., infinitely
differentiable of class C∞) and forward complete to guarantee the
existence of solutions and prevent from finite escape time. The
sampling period δ ∈]0, T ∗

[ is assumed regular. T ∗ > 0 denotes the
maximum allowable sampling period (MASP, Tanasa et al., 2016).
Given a vector field f : Rn

→ TxRn, Lf denotes the associated Lie
derivative operator, Lf =

n
i=1 fi(·)

∂
∂xi

. eLf denotes the associated

Lie series operator, eLf = 1 +


i≥1
Lif
i! . When no ambiguity is

possible, Lf Lg stands for Lf ◦Lg . For any real valued function h onRn,
one gets eLf h(x) = eLf h


x = h(eLf x), where eLf x stands for eLf Id


x

and Id is the identity function over Rn. The evaluation of a function
at time t = kδ (


t=kδ) is omitted when it is clear from the context.

The subscript

k is omitted as well when no confusion arises. A

function R(x, δ) is said to be of order δp, p ≥ 1 (R(x, δ) = O(δp)) if
wheneverR is defined it can bewritten asR(x, δ) = δp−1R̃(x, δ) and
∃θ ∈ K∞ and δ∗

≥ 0, such that for each δ ≤ δ∗, R̃(x, δ) ≤ θ(δ).

2.2. Problem statement

In this paper we consider strict-feedback continuous-time
dynamics (Khalil, 2002) in the generalm-cascade form

ẋ1 = f1(x1)+ g1(x1)x21
ẋ2j = f2j(x1, x21, . . . , x2j)+ g2j(x1, x21, . . . , x2j)x2j+1

ẋ3 = u (1)

where x1 ∈ Rp, x2 = (x21, . . . , x2m−1)
⊤

∈ Rm−1, x3 = x2m, x2j, u ∈

R for j = 1, . . . ,m − 1. We assume that g2j(·) ≠ 0 (globally)

and that the origin is the unique equilibrium of (1). From now
on, the stabilizability of the x1-dynamics via fictitious feedback
x21 = γ (x1) is assumed.

Assumption 2.1. There exist functions γ (·) : Rp
→ R with

γ (0) = 0 and proper1 W (·) : Rp
→ R+, such that (Lf1 +

γ Lg1)W (x1) < 0 for all x1 ∈ Rp/{0}.

Accordingly, I&I stabilizability of (1) can be proven in the sense of
Definition 1 in Astolfi and Ortega (2003).

With reference to standard arguments, one defines the target
dynamics as ξ̇ (t) = f1(ξ)+g1(ξ)γ (ξ) and the immersionmapping
as π(ξ) = col(ξ , γ1(ξ), . . . , γm(ξ))with, for i = 1, . . . ,m − 1

γ1(ξ) = γ̃1(ξ) = γ (ξ) (2)
γi+1(ξ) = γ̃i+1(ξ , γ1(ξ), . . . , γi(ξ))

= g−1
2i (ξ , γ1(ξ), . . . , γi(ξ))(γ̇i(ξ)− f2i(ξ , γ1(ξ), . . . , γi(ξ))).

According to (2), γ̇m(ξ) = c(ξ) defines the control constraining the
state evolutions of (1) over the target. Setting

z1 = φ1(x1, x21) = x21 − γ̃1(x1) (3)
zj = φj(x1, x21, . . . , x2j) = x2j − γ̃j(x1, x21, . . . , x2j)
zm = φj(x1, x2, x3) = x3 − γ̃m(x1, x2)

for j = 2, . . . ,m − 1, GAS of the equilibrium of (1) is achieved
under the feedback

uc = ψ(x, z) = −K(x)z + ˙̃γ m(x), K(x) > 0 (4)

which guarantees manifold attractivity and trajectory bounded-
ness of the extended dynamics over Rp+2m

żj = g2j(x1, z1 + γ̃1(x1), . . . , zj + γ̃j(x1, x21, . . . , x2j))zj+1

żm = u − ˙̃γ m(x)
ẋ1 = f1(x1)+ g1(x1)(z1 + γ̃1(x1))

ẋ2j = g2j(x1, x21, . . . , x2j)zj+1 + ˙̃γ j(x1, x21, . . . , x2j)

ẋ3 = u (5)

for j = 1, . . . ,m − 1.

Remark 2.1. Mappings γ̃i : Rp
× Ri−1

→ R are instrumental to
define the off-manifold components z. In the sequel, with a slight
abuse of notation, we will use γi instead of γ̃i when no confusion
arises.

In the following, we discuss the problem of preserving I&I
stabilizabilitywhen the control variable u(t) is piecewise constant;
i.e. u(t) = uk for t ∈ [kδ, (k + 1)δ[, k ≥ 0. For this purpose,
it is instrumental to redefine I&I stabilizability for nonlinear DT
systems (Monaco & Normand-Cyrot, 2015) of the form

xk+1 = F(xk, uk) (6)

where x ∈ Rn, u ∈ R and x∗ is the equilibrium.

Definition 2.1. The DT dynamics (6) is said to be I&I stabilizable if
there exist mappings

α(·) : Rp
→ Rp

; π(·) : Rp
→ Rn

; c(·) : Rp
→ R

φ(·) : Rn
→ Rn−p

; ψ(·, ·) : Rn×(n−p)
→ R

such that the following conditions hold:

1 W : Rn
→ R is proper if ∀ r > 0, W−1([0, r]) = {x ∈ Rn

: W (x) ≥ r} is
compact.
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