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a b s t r a c t

Design of controllers in the form of a state-feedback coupled to a state observer is studied in the context
of uncertain systems. The classical approach by Luenberger is revisited. Results provide a heuristic design
procedure thatmimics the independent state-feedback/observer gains design byminimizing the coupling
of observation error dynamics on the ideal state-feedback dynamics. The proposed design and analysis
conditions apply to linear systems rationally-dependent on uncertainties defined in the cross-product of
polytopes. Convex linear matrix inequality results are given thanks to the combination of a descriptor
multi-affine representations of systems and the S-variable approach. Stability and H∞ performances are
assessed by multi-affine parameter-dependent Lyapunov matrices.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of the paper is to investigate, in the robust control
context, the two step design strategy proposed by Luenberger
(1971): ‘‘The first phase is design of the control law assuming that the
state vector is available. The second phase is the design of a system that
produces an approximation to the state vector. This system is called
an observer, or Luenberger observer’’. At the difference of the case of
systems without uncertainties, this ideal separation principle does
not hold in the robust case. Stability of the closed-loop cannot any
more be guaranteed by independent choices of stabilizing state-
feedback and observer gains. A heuristic systematic procedure
can nevertheless be constructed with the aim of minimizing
the inevitable coupling between the state-feedback and observer
dynamics.

Controllers with observed-state feedback structure form a sub-
class of dynamic output feedback controller models. Moreover,
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the observed-state feedback controllers build with identity
Luenberger observers are special representations of dynamic
controllers of the same order as the plant (full-order controllers).
The issue of designing full-order controllers has convex LMI-based
solutions as long as the systems are not affected by uncertainties
(Ebihara, Peaucelle, & Arzelier, 2015; Scherer, Gahinet, & Chilali,
1997). Unfortunately, as soon as the systems are affected by
uncertainties, the design problem is either non-convex (Geromel,
Korogui, & Bernussou, 2007; Kanev, Scherer, Verhaegen, &
De Schutter, 2004), conservative (Lien & Yu, 2008; Peaucelle
& Arzelier, 1998), or needs to compute and manipulate the
parameter-dependent coefficients of the characteristic polynomial
(Chesi, 2014). Heuristics can handle the non-convexity. Our
strategy is one of such.

The plants we aim at stabilizing are in discrete-time, with
uncertainties θ , and described in state-space by xk+1 = Ar(θ)xk +

Br(θ)uk and yk = Cxk. The final goal is to design a Luenberger like
identity observer with dynamics x̂k+1 = Aox̂k + Bouk + L(Cx̂k − yk)
associated to a observed-state feedback uk = Kx̂k.

A first design step in the proposed procedure is, as in the
classical Luenberger strategy, the design of a robust static state-
feedback control K . This topic has been studied in the past bymany
authors, see Boyd, El Ghaoui, Feron, and Balakrishnan (1994) and
deOliveira, Bernussou, andGeromel (1999) for example. The result
we provide for this step is a variation on results from de Oliveira
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et al. (1999), extended to systems rational in the uncertainties
using properties exposed in Ebihara et al. (2015).

The second design step is observer design. This problem has
diverse solutions in the literature for uncertain systems. Two
types of results can be distinguished. A first category tackles the
observer problem as part of the output filtering issue. Geromel
and de Oliveira (2001) gives for that problem an LMI formulation
in the case of systems with structured polytopic uncertainties.
As discussed in that paper, the significant feature of robust
filtering (which is usually considered as dual with respect to state-
feedback) is that it needs to optimize over more decision variables
than just one gain. At the difference of state-feedback where
only the gain K is designed, the methodology of Geromel and de
Oliveira (2001) involves the design of both an observer-like gain L
and of the state matrix Ao. The same conclusions hold for results
of Scherer and Köse (2008) in the context of IQCs. The second
category of results tackles directly the observer design. These, at
the difference of filter-design results, have the main advantage
not to assume open-loop stability of the plant. Only the error
ek = xk − x̂k between the plant states and the observer states
needs to be stable. Surprisingly, robust observer results do not
consider the upper formulated issue about having the state matrix
Ao as a design variable. For example recent results of Abbaszadeh
and Marquez (2009) and Mondal, Chakraborty, and Bhattacharyya
(2010) consider only the design of the Lmatrix while Ao is chosen a
priori to be the one of the nominal system (Ao = Ar(0)). In Lien and
Yu (2008), the assumption of a fixed Ao is alleviated, but results are
restricted to unstructured norm-bounded uncertainties. Our result
considers both matrices Ao and Bo as free to design variables. As
discussed in Polyak, Nazin, Durieu, andWalter (2004), this problem
is a difficult one, and we do not claim to provide a final answer.

The closed-loop dynamics in terms of plant state xk and
observation error ek are driven by the following closed-loop state
matrix:

Ac(θ) =


Ar(θ) + Br(θ)K −Br(θ)K
∆A(θ) + ∆B(θ)K Ao + LC − ∆B(θ)K


where ∆A(θ) = Ar(θ) − Ao and ∆B(θ) = Br(θ) − Bo. From this
formula, it is trivial that if ∆A = 0 and ∆B = 0 then the closed
loop dynamics depend only on the choice of stabilizing gains K
and L which could be done independently. This is the separation,
which is no more achievable in the robust context. A way around
this difficulty would be to minimize the norms of ∆A(θ) and
∆B(θ) independently of any other consideration such as stability or
performance. It is not the choicewe adopt. The proposed procedure
is to minimize the effects of ϵk = Kek on the state-feedback
dynamics (due to the upper-right block in Ac(θ)) seen as outputs
of the error dynamics perturbed by (∆A(θ) + ∆B(θ)K)xk (lower-
left block in Ac(θ)). We show, that formalized in this way, the
observer design problem has convex LMI formulations and one can
via multi-objective methodology manage the inevitable tradeoff
between good precision and low transient peaks (Khalil, 2008).

The state xk is seen in the observer design phase as some input
perturbation but it is not just any bounded signal. For this reason,
our proposed procedure includes an analysis step between the
state-feedback design and the observer design steps. This analysis
provides information on expected trajectories of xk for known
state-feedback gainK . Not only this analysis step allows to improve
the quality of the observer design but it also allows in the end
to assess closed-loop stability with small-gain theorem argument.
This small-gain argument happens to be conservative. Hence if it
is not positive, a closed-loop analysis LMI test is also proposed
to analyze stability and performance of the global observed-state
feedback system.

The overall design procedure is exposed for systems rationally-
dependent on uncertainties θ . Uncertainties are modeled as

lying in the cross-product of independent polytopes, which
is an equivalent formulation to multi-simplex modeling in
Morais, Braga, Oliveira, and Peres (2013). For this type of
models, we propose a transformation called descriptor multi-
affine representation (DMAR for short) which is an alternative
to linear-fractional representations (Hecker & Varga, 2004). The
DMAR is directly inspired by results from Coutinho, Trofino,
and Fu (2002) and Masubuchi, Akiyama, and Saeki (2003) and
has smaller dimensions than the conventional linear-fractional
representations. The rational dependence is converted into a
multi-affine dependence at the expense of rewriting the plant in
descriptor form. As exposed in de Oliveira and Skelton (2001) and
Ebihara et al. (2015) this descriptor structure happens to be well
adapted for deriving S-variable LMI results. We highlight this fact
by separating modeling issues (lemmas of Section 2), and the S-
variable technique (Theorems of Section 3).

The outline of the paper is as follows. Section 2 is dedicated
to the exposure of the descriptor multi-affine representation
of rationally-dependent uncertain systems. The four LMI results
for state-feedback design, state-feedback loop analysis, observer
design and observed-state feedback loop analysis are given in
Section 3. The heuristic procedure with two design steps and two
analysis steps is presented in Section 4. A numerical example
illustrates the results in Section 5. Conclusions are drawn in the
final section.
Notation:

AT is the transpose of the matrix A. {A}
S stands for the

symmetricmatrix {A}
S

= A+AT .diag

F1, . . . Fi, . . .


stands for

a block-diagonal matrix whose diagonal blocks are the Fi matrices.
A ≻ B is the matrix inequality stating that A − B is symmetric
positive definite. The terminology ‘‘congruence operation of A on B’’
is used to denote ATBA. A matrix inequality of the type N(X) ≻ 0 is
said to be a linearmatrix inequality (LMI for short), ifN(X) is affine
in the decision variables X . Ξv̄ = {ξv=1...v̄ ≥ 0,

v̄
v=1 ξv = 1}

is the unit simplex in Rv̄ . The elements ξ of unitary simplexes
are used to describe polytopic type uncertainties. For a discrete-
time signal vk≥0, ∥v∥

2
2 =


∞

k=0 vT
k vk is the squared l2 norm and

∥v∥
2
2,k̄

=
k̄

k=0 vT
k vk stands for the truncated squared norm.

∥v∥p = supk≥0(v
T
k vk)

1/2 denotes the peak of the euclidean norm
over time.

2. Descriptor multi-affine modeling of rationally dependent
uncertain systems

We shall consider in this paper parameter-dependent systems
such as

xk+1 = Ar(θ)xk + Br(θ)uk + Brw(θ)wk
zk = Crz(θ)xk + Drzu(θ)uk + Drzw(θ)wk
yk = Cxk

(1)

where all the matrices except C are rational and continuous in
uncertain parameters gathered in the notation θ . The parameters
θ are assumed to lie in a set Θ defined as the cross product of p̄
sets θ ∈ Θ =


(θ1, . . . , θp̄) ∈ Θ1 × · · · × Θp̄


. The p̄ components

of θ are independent vectors of Rmp . Each set Θp is assumed to be
a polytope with v̄p vertices from the set Vp =


θp

[1], . . . , θp
[v̄p]


.

Θp is the convex hull of the vertices, or equivalently, each θp
writes as the weighted sum of vertices with weight from unitary
simplexes Θp = Co(Vp) =


θp =

v̄p
vp=1 ξp,vpθp

[vp] : ξp ∈ Ξv̄p


.

In the following, V = V1 × · · · × Vp̄ is the set of all extremal
values of the parameters. A generic element of V will be denoted
θ [v] with v = (v1, . . . , vp̄) the vector of indices of vertices for
each component. I is the set of all vectors of indices v. θ [v] is the
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