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a b s t r a c t

The problem of control synthesis to maximize the probability of satisfying automata specifications
for systems with uncertainty is addressed. Two types of uncertainty are considered; stochasticity in
the dynamical system and in the sets defining the specifications. We model the uncertain dynamical
sets as stochastic set processes. We show that the optimal control policy can be computed by solving
a reachability problem for a hybrid stochastic system, which evolves on product state spaces of the
automaton, stochastic sets, and the dynamical system. We derive an approximation to the stochastic set
processes to alleviate the complexity of reachability computation. A case study illustrates the framework
and the solution approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With increasing autonomy in several domains spanning from
robotics and transportation to energy systems, the need for control
synthesis for complex specifications in uncertain environments
increases. To define complex specifications for a dynamical sys-
tem, one can use formal languages from computer science, such as
linear temporal logic (LTL). In deterministic systems, LTL verifica-
tion for a continuous state system can be cast as automata ver-
ification after deriving a finite state bisimulation of the system
(Tabuada & Pappas, 2006). For stochastic systems one needs to
resort to probabilistic bisimulations to derive a finite state equiv-
alent system (Abate, Prandini, Lygeros, & Sastry, 2008). Tem-
poral logic verification has been applied to stochastic systems
modeled by finite state Markov chains (De Alfaro, 1998; Kress-
Gazit, Wongpiromsarn, & Topcu, 2011; Lahijanian, Andersson, &
Belta, 2011; Wolff, Topcu, & Murray, 2011). For Markov processes
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with uncountable state spaces specifications given by determinis-
tic finite state automata have been verified for autonomous (Abate,
Katoen, & Mereacre, 2011) and for controlled systems (Kamgar-
pour, Summers, & Lygeros, 2013; Tkachev, Mereacre, Katoen, &
Abate, 2013). For this class of systems, PCTL model checking has
been addressed in Lahijanian, Andersson, and Belta (2015) and
Ramponi, Chatterjee, Summers, and Lygeros (2010).

In this paper, we consider automata-based control synthesis for
a Markov decision process. In addition to stochasticity in the sys-
tem dynamics, we consider that the sets defining the automaton
alphabet and thus the specification are uncertain. The motivation
is to address applications in which a dynamical system interacts
with a partially known environment. As such, the locations of the
safe sets or target sets are not known a priori. This problem has
been receiving increasing attention in temporal logic motion plan-
ning. InGuo, Johansson, andDimarogonas (2013),Maly, Lahijanian,
Kavraki, Kress-Gazit, andVardi (2013) andWongpiromsarn, Topcu,
and Murray (2010) the motion plan derived from a specification
is revised online based on measurements of the environment. In
Chen, Tůmová, and Belta (2012), Cizelj, Ding, Lahijanian, Pinto, and
Belta (2011) and Ulusoy, Wongpiromsarn, and Belta (2014) tem-
poral logic specifications are verified for a deterministic dynamical
system interacting with stochastic agents in the environment. The
difference of this work with the above past works is in consider-
ation of stochastic systems with uncountable state spaces, and in
the approach to model the uncertainties in the environment.
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We model uncertain sets capturing a specification on a
Markov decision process as stochastic set processes (Summers,
Kamgarpour, Lygeros, & Tomlin, 2011). In Summers, Kamgarpour,
Tomlin, and Lygeros (2013) we solved the problem of reachability
given stochastic set processes defining safe and target sets. The
framework was applied to aircraft motion planning in hazardous
weather (Summers et al., 2011), camera surveillance networks
(Raimondo, Kariotoglou, Summers, & Lygeros, 2011) and an
emergency rescue mission (Wood, Summers, & Lygeros, 2013).
The contributions of this paper are as follows. First, we provide
a framework to formulate automata specifications with stochastic
set processes. Second, we show that similar to Abate et al. (2011),
Kamgarpour et al. (2013) and Tkachev et al. (2013), we can cast
automata verification as a reachability problem. Third, we derive
an approximation to the stochastic set processes to alleviate the
complexity of reachability computation. The problem formulation
and solution approach are illustrated with a case study.

2. Dynamical system and specification models

Let X ⊆ Rn andU ⊂ Rm be Borel sets representing the state and
input spaces, respectively. For a space S, let B(S) denote the set of
Borel subsets of S. The stochastic dynamical system is described
by:

xt+1 ∼ τ X (B|xt , ut), t = 0, 1, . . .

where xt ∈ X and ut ∈ U are the state and input at time t , and
B ∈ B(X). The function τ X

: B(X) × X × U → [0, 1] is a
Borel measurable stochastic kernel, that is, τ X (B|·) is a measurable
function on X ×U for each B ∈ B(X) and τ X (·|x, u) is a probability
measure on X for each (x, u). The interpretation is that the state
xt+1 is sampled from the probability distribution τ X (·|xt , ut).

We consider specifications on the trajectory {xt}Nt=0 defined in
terms of reaching or avoiding given subsets of X in a finite time
horizon N ∈ N. Each of these subsets are either known or are
described by a stochastic set process defined below (Summers
et al., 2013).

Definition 1 (Stochastic Set Process). Let Y ⊆ Rp, p ∈ N be a
parameter space and γ : Y → B(X) be a set valued map. Let
τ Y

: B(Y ) × Y → [0, 1] be a Borel measurable stochastic kernel,
which assigns to each y ∈ Y a probability measure τ Y (·|y) on the
Borel space B(Y ). A stochastic set process is defined by the map γ ,
the initial condition y0 ∈ Y and the Markov process for evolution
of the parameter yt+1 ∼ τ Y (B|yt), B ∈ B(Y ).

An example of a stochastic set process is an ellipse in two
dimensional space whose center and eccentricity evolve according
to a givenprobability distribution (Summers et al., 2011). Examples
in the contexts of surveillance and search and rescue in uncertain
environments are provided in Raimondo et al. (2011) and Wood
et al. (2013).

In order to systematically define the linear time specifications
that involve multiple safety and reachability objectives we use the
framework of finite state automata (Clarke, Grumberg, & Peled,
2001).

Definition 2 (Automaton). A finite state automaton is a tuple A =

(Q ,Q I ,Q F , Σ, ∆), where Q is a finite set of nq states; Q I
⊂ Q is

a set of initial states; Q F
⊂ Q is a set of final states; Σ is a finite

alphabet; ∆ ⊂ Q × Σ × Q is a transition relation.

Let w = (w0, . . . , wN) with wt ∈ Σ for t = 0, 1, . . . ,N , be a
sequence referred to as a word. Let q−1 ∈ Q I be an initial state of
the automaton. Automaton A accepts w if there exists a sequence
of automaton states (q0, q1, . . . , qN) such that (qt−1, wt , qt) ∈ ∆

for t = 0, 1, . . . ,N , and qN ∈ Q F . By linking an automaton

alphabet and its transition relation to a given stochastic system,
we obtain an automaton As, which encodes specifications on the
system trajectory {xt}Nt=0.

For each automaton state j ∈ Q , let γ ij
: Y → B(X) for

i = 1, . . . , nj denote a number of parameterized sets, which de-
termine the transition of the automaton from state j to state i. In
the product space X × Y , define K ij

:= {(x, y) | x ∈ γ ij(y)}. Conse-
quently, x ∈ γ ij(y) ⇐⇒ (x, y) ∈ K ij. Let A = ∪

nq
j=1 ∪

nj
i=1 K

ij. The
automaton alphabet is given as Σ := 2A and its transition relation
is ∆ := {(j, σ , i) | σ = {K ij

}, ∀i, j ∈ Q }. Given {xt}Nt=0, {yt}
N
t=0, a la-

beling function L : X×Y → Σ returns the subsets ofA towhich the
pair (x, y) belongs and thus, generates a word {L(xt , yt)}Nt=0 ∈ ΣN .
This word enables the transitions of the automaton as allowed by
∆. For any final state q ∈ Q F , define (q, X ×Y , q) ∈ ∆, that is, each
final automaton state is absorbing. Denote the resulting automaton
by As.

Assumption 1. For each j ∈ Q , the sets {K ij
}
nj
i=1 partition X × Y .

Lemma 1. Under Assumption 1, automaton As is deterministic and
non-blocking.

Proof. Since ∪
nj
i=1 K

ij
= X × Y for every automaton state j, every

(x, y) ∈ X × Y belongs to a set K ij. Thus, there exists a σ with
(i, σ , j) ∈ ∆ and the automaton is non-blocking. In addition, since
{K ij

}
nj
i=1 partition the state space, they are disjoint. Given this and

the fact that (j, σ , i) ∈ ∆ ⇐⇒ σ = {K ij
}, for every j there exists

a unique i such that (j, σ , i) ∈ ∆. �

The automaton needs to be deterministic to ensure a well-
defined hybrid stochastic kernel on the product spaces Q × X × Y ,
as per solution approach of Section 3.

Definition 3 (Specification). The trajectory {xt}Nt=0 satisfies a
specification given by automaton As if there exists a sequence of
automaton states (q0, q1, . . . , qN) such that (qt−1, L(xt , yt), qt) ∈

∆ for t = 0, . . . ,N , with q−1 ∈ Q I , and qN ∈ Q F .

Given that Q F is absorbing the specification is satisfied at the
first time t , at which qt reaches Q F . The indexing of q−1 is a
convention so that the specification is satisfied at time 0 if q0 with
(q−1, L(x0, y0), q0) lies in Q F .

For a set S, let St be the Cartesian product of S with itself t times.
Denote Ht := (X × Y )t as the history of the dynamical system
and the stochastic set parameters from time 0 to time t . A history
dependent policy is defined as a sequence π = (π0, π1, . . . , πN−1),
πt : Ht → U . The control synthesis objective is stated as follows.

Problem. Find a policy πt : Ht → U , t = 0, . . . ,N − 1, Ht =

(X × Y )t , that maximizes the probability of satisfying the
specification given by automaton As.

3. Solution approach

3.1. Control synthesis as a reachability problem

Let S = Q × X × Y denote the hybrid state space consisting
of the discrete automaton states Q , the dynamical system state X ,
and the set parameter space Y . Define a discrete stochastic kernel
τ q

: Q × Q × X × Y → [0, 1]:

τ q(i|j, x, y) = 1i′(i), (1)

where i′ ∈ Q satisfies (j, L(x, y), i′) ∈ ∆. It follows from Assump-
tion 1 that


i∈Q τ q(i|j, x, y) = 1 and this construction results in a

well-defined stochastic kernel.
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