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a b s t r a c t

A tracking controller is developed for a class of uncertain nonlinear systems subject to unknown
time-varying input delay and additive disturbances. A novel filtered error signal is designed using
the past states in a finite integral over a constant estimated delay interval. The maximum tolerable
error between unknown time-varying delay and a constant estimate of the delay is determined to
establish uniformly ultimately bounded convergence of the tracking error to the origin. The controller
development is based on an approach which uses Lyapunov–Krasovskii functionals to analyze the
effects of unknown sufficiently slowly time-varying input delays. A stability analysis is provided to
prove ultimate boundedness of the tracking error signals. Numerical simulation results illustrate the
performance of the developed robust controller.

© 2016 Published by Elsevier Ltd.

1. Introduction

Time delay commonly exists in many engineering applications
such as master–slave robots, haptic systems, chemical systems
and biological systems. The system dynamics, communication
over a network, and sensing with associated sensor processing
(e.g., image-based feedback) can induce time delays that can
result in decreased performance and loss of stability. Time delays
in physical systems are often time-varying. For example, the
input delay in neuromuscular electrical stimulation applications
often changes with muscle fatigue (Downey, Kamalapurkar,
Fischer, & Dixon, 2015; Merad, Downey, Obuz, & Dixon, 2016),
communication delays in wireless networks change with the
distance between the communicating agents, etc. Motivated by
such practical engineering challenges, numerous research efforts
have focused on designing controllers to compensate time delay
disturbances effects.

Research in recent years has focused on developing controllers
that provide stability for systems with delays in the closed-
loop dynamics. Smith’s pioneering work Smith (1959), Arstein’s
model reduction (Artstein, 1982), and the finite spectrumapproach
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(Manitius & Olbrot, 1979) have heavily influenced the methods of
designing controllers that compensate the effects of delays.

In recent years, research has focused on systems that experi-
ence a known delay in the control input. The works in Lozano,
Castillo, Garcia, and Dzul (2004), Normey-Rico, Guzman, Dormido,
Berenguel, and Camacho (2009) andRoh andOh (1999) develop ro-
bust controllers which compensate for known input time delay for
systems with linear plant dynamics. Compensation of input delay
disturbances for nonlinear plant dynamics is addressed in promi-
nentworks such as Dinh, Fischer, Kamalapurkar, and Dixon (2013),
Fischer (2012), Fischer, Dani, Sharma, and Dixon (2011), Fischer,
Dani, Sharma, and Dixon (2013), Fischer, Kamalapurkar, Fitz-Coy,
and Dixon (2012), Huang and Lewis (2003), Obuz, Tatlicioglu, Ce-
kic, and Dawson (2012), Sharma, Bhasin, Wang, and Dixon (2011)
and Teel (1998) for nonlinear plant dynamics affected by exter-
nal disturbances and in Henson and Seborg (1994), Jankovic (2006)
and Mazenc and Bliman (2006) for plant dynamics without exter-
nal disturbances. However, the controllers in Dinh et al. (2013),
Fischer (2012), Fischer et al. (2011), Fischer et al. (2013), Fischer,
Kamalapurkar et al. (2012), Henson and Seborg (1994), Huang and
Lewis (2003), Jankovic (2006), Mazenc and Bliman (2006), Obuz
et al. (2012), Sharma et al. (2011) and Teel (1998), require exact
knowledge of the time delay duration. In practice, the duration of
an input time delay can be challenging to determine for some ap-
plications, therefore, it is necessary to develop new controllers that
do not require exact knowledge of the time delay.

Since uncertainty in the delay can lead to unpredictable closed-
loop performance (potentially even instabilities), several recent
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results have been developed which do not assume that the delay
is exactly known. Compensation for unknown input delay is
investigated in Bresch-Pietri, Chauvin, and Petit (2010, 2011),
Bresch-Pietri, Chauvin, and Petit (2012), Bresch-Pietri and Krstic
(2009), Choi and Lim (2010), Herrera, Ibeas, Alcantara, Vilanova,
and Balaguer (2008), Li, Gu, Zhou, and Xu (2014), Li, Zhou, and Lin
(2014), Polyakov, Efimov, Perruquetti, and Richard (2013), Wang,
Wu, and Gao (2005) and Wang, Saberi, and Stoorvogel (2013) for
systemswith exactly knowndynamics and Chen and Zheng (2006),
Yue (2004), Yue and Han (2005) and Zhang and Li (2006a,b) for
systems with uncertain dynamics. However, all of the controllers
in Bekiaris-Liberis and Krstic (2013), Bresch-Pietri et al. (2010,
2011), Bresch-Pietri et al. (2012), Bresch-Pietri and Krstic (2009),
Chen and Zheng (2006), Choi and Lim (2010), Herrera et al. (2008),
Li, Gu et al. (2014), Li, Zhou et al. (2014), Polyakov et al. (2013),
Wang et al. (2013), Wang et al. (2005), Yue (2004), Yue and Han
(2005) and Zhang and Li (2006a,b) are developed for linear plant
dynamics. The works in Balas and Nelson (2011), Bresch-Pietri and
Krstic (2014), Mazenc and Niculescu (2011) and Nelson and Balas
(2012) develop controllers for plants with nonlinear dynamics
and an unknown input delay, but require exact model knowledge
of the nonlinear dynamics. The controller designed in Chiu and
Chiang (2009) compensates for Takagi–Sugeno fuzzy systems
and unknown actuation delay duration by using a memoryless
observer and a fuzzy parallel distributed integral compensator
for nonlinear, uncertain dynamics. However, the controller in
Chiu and Chiang (2009) is designed for output regulation and
does not address the output tracking problem. There remains a
need for a tracking controller that can compensate for the effects
of unknown time-varying input delays for a class of uncertain
nonlinear systems.

When uncertain nonlinear dynamics are present, the control
design is significantly more challenging than when linear or
exactly known nonlinear dynamics are present. For example, in
general, if the system states evolve according to linear dynamics,
the linear behavior can be exploited to predict the system response
over the delay interval. Exact knowledge of the dynamics facilitates
the ability to predict the state transition for nonlinear systems. For
uncertain nonlinear systems, the state transition is significantly
more difficult to predict, especially if the delay interval is also
unknown and/or time-varying. Given the difficulty in predicting
the state transition, the contribution in this paper (and in Fischer,
Kamalapurkar et al., 2012 and Kamalapurkar, Fischer, Obuz, &
Dixon, 2016) is to treat the input delay and dynamic uncertainty as
a disturbance and develop a robust controller that can compensate
for these effects.

Recently, Fischer et al. presented a robust controller for
uncertain nonlinear systems with additive disturbances subject to
slowly varying input delay in Fischer, Kamalapurkar et al. (2012),
where it is assumed that the input delay duration is measurable
and the absolute value of the second derivative of the delay is
bounded by a known constant. The approach in this study extends
our previous work in Fischer, Kamalapurkar et al. (2012) by using
a novel filtered error signal to compensate for an unknown slowly
varying input delay for uncertain nonlinear systems affected by
additive disturbances. In Fischer, Kamalapurkar et al. (2012), a
filtered error signal defined as the finite integral of the actuator
signals over the delay interval is used to obtain a delay-free
expression for the control input in the closed-loop error system.
However, the computation of the finite integral requires exact
knowledge of the input delay. In this study, a novel filtered error
signal is designed using the past states in a finite integral over
a constant estimated delay interval to cope with the lack of
delay knowledge, which requires a significantly different stability
analysis that takes advantage of Lyapunov–Krasovskii functionals.
Techniques used in this study provide relaxed requirements of

the delay measurement and obviate the need for a bound of the
absolute value of the second derivative of the delay. It is assumed
that the estimated input delay is selected sufficiently close to
the actual time-varying input delay. That is, there are robustness
limitations, which can be relaxed with more knowledge about
the time-delay. Because it is feasible to obtain lower and upper
bounds for the input delay in many applications (Richard, 2003), it
is feasible to select a delay estimate in an appropriate range. New
sufficient conditions for stability are based on the length of the
estimated delay as well as the maximum tolerable error between
the actual and estimated input delay. A Lyapunov-based stability
analysis is used to prove ultimate boundedness of the error signals.
Numerical simulation results demonstrate the performance of the
robust controller.

2. Dynamic system

Consider a class of nth-order nonlinear systems

ẋi = xi+1, i = 1, . . . , n − 1,
ẋn = f (X, t) + d + u (t − τ) , (1)

where xi ∈ Rm, i = 1, . . . , n are the measurable system states,
X =


xT1, xT2, . . . , xTn

T
∈ Rmn, u ∈ Rm is the control input,

f : Rmn
× [t0, ∞) → Rm is an uncertain nonlinear function,

d : [t0, ∞) → Rm denotes sufficiently smooth unknown additive
disturbance (e.g., unmodeled effects), and τ : [t0, ∞) → R
denotes a time-varying unknown positive time delay,1 where t0
is the initial time. Throughout the paper, delayed functions are
denoted as

hτ ,


h (t − τ) t − τ ≥ t0
0 t − τ < t0.

The dynamic model of the system in (1) can be rewritten as

x(n)
1 = f (X, t) + d + u (t − τ) , (2)

where the superscript (n) denotes the nth time derivative. In
addition, the dynamic model of the system in (1) satisfies the
following assumptions.

Assumption 1. The function f and its first and second partial
derivatives are bounded on each subset of their domain of the form
Ξ × [t0, ∞), where Ξ ⊂ Rmn is compact and for any given Ξ , the
corresponding bounds are known.2

Assumption 2 (Fischer, Kan, &Dixon, 2012). The nonlinear additive
disturbance term and its first time derivative (i.e., d, ḋ) exist and are
bounded by known positive constants.

Assumption 3. The reference trajectory xr ∈ Rm is designed such
that the derivatives x(i)

r , ∀i = 0, 1, . . . , (n + 2) exist and are
bounded by known positive constants.

1 The developed method can be extended to the case of multiple delays.
Assumption 4 can be modified for the case of multiple delays by redefining the
delayed input vector and using themaximum input delay instead of the actual delay
bound such that max{τ1, τ2, . . . , τm} < Υ . To obviate the requirement of exact
knowledge of the time delay dynamics in the stability analysis and introducing new
Lyapunov–Krasovskii functionals for each input delay, the closed-loop dynamics
can be revised in terms of u̇τ̂ , (u̇τ − u̇τ̂ ) instead of the terms u̇τ̂ , u̇τ , : (u̇τ − u̇τ̂ ).
In this paper, single time-varying input delay is considered for ease of exposition.
2 Given a compact set Ξ ⊂ Rmn , the bounds of f , ∂ f (X,t)

∂X , ∂ f (X,t)
∂t , ∂2 f (X,t)

∂2X
, ∂2 f (X,t)

∂X∂t ,

and ∂2 f (X,t)
∂2 t

over Ξ are assumed to be known.
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