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a b s t r a c t

In this paper, the state estimation problem for discrete-timeMarkov jump linear systems affected by time-
correlated measurement noise is considered where the time-correlated measurement noise is described
by a linear systemmodel with white noise. As a result, two algorithms are proposed to estimate the state
of the system under consideration based on a measurement sequence. The first algorithm is optimal in
the sense of minimum mean-square error, which is obtained based on the measurement differencing
method, Bayes’ rule and some results derived in this paper. The second algorithm is a suboptimal
algorithm obtained by using a lot of Gaussian hypotheses. The proposed suboptimal algorithm is finite-
dimensionally computable and does not increase computational and storage load with time. Computer
simulations are carried out to evaluate the performance of the proposed suboptimal algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete-time Markov jump linear systems (DTMJLSs) are
discrete-time systems with parameters that evolve with discrete-
time according to a finite-state Markov chain. In the last few
decades, DTMJLSs have received wide attention because they can
be used to describe a wide variety of practical systems (Logothetis
& Krishnamurthy, 1999) with the behavior of physical processes
subject to random abrupt changes in structure.

One of the most important problems for this class of systems is
to estimate the system state based on a measurement sequence,
which has received much research interest in recent years
because several estimation problems in tracking of maneuvering
object, signal processing, fault detection, telecommunication and
manufacturing require estimating the state of DTMJLSs (Hsiao
& Weng, 2012; Lee, Motai, & Choi, 2013; Li & Jia, 2012; Li &
Jilkov, 2005; Ulker & Gunsel, 2012). Using different criteria, many
research results on the state estimation problem of DTMJLSs
were reported in the literature where most results are based
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on the minimum mean-square error (MMSE) criterion because,
generally speaking, corresponding research results based on the
criterion have better performance. Since optimal estimate of
state in the sense of MMSE requires an exponential complexity
of order Nk where k denotes the number of measurements
and N denotes the possible realizations of a finite-state Markov
chain (Ackerson & Fu, 1970; Bar-Shalom & Li, 1996), suboptimal
algorithm had to be considered to limit the computational
requirements. The generalized pseudo Bayesian (GPB) methods
(Ackerson & Fu, 1970; Chang & Athans, 1978) and the interacting
multiple-model (IMM) algorithm (Blom & Bar-Shalom, 1988) are
the most popular suboptimal algorithms based on the MMSE
criterion. Both the GPB and IMM algorithms were obtained by
summing theweightedmode conditional estimates. The difference
between the GPB and IMM algorithms is that these algorithms
use different Gaussian hypotheses to compute the weights and
mode conditional estimates. More precisely, at the kth step, the
so-called GPB1 algorithm proposed in Ackerson and Fu (1970)
assumed that the conditional probability density function of the
system state at time k − 1 given a sequence of the measurement
up to k−1 is Gaussian. The GPB2 algorithmwas achieved in Chang
and Athans (1978) under the assumption that the conditional
probability density function of the system state at time k − 1
given a sequence of the measurement up to k − 1 and any state
of the Markov chain at time k − 1 is Gaussian. The IMM algorithm
was obtained by using hypotheses merging. Apart from using the
Gaussian hypotheses in the GPB2 algorithm, the IMM algorithm
also merges the assumption that the conditional probability
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density function of the system state at time k−1 given a sequence
of the measurement up to k − 1 and any state of the Markov
chain at time k is Gaussian. Other suboptimal algorithms based
on this criterion include simulation-based algorithms (Doucet
& Andrieu, 2001; Doucet, Gordon, & Krishnamurthy, 2001), the
variable structure IMM algorithm (Li & Bar-Shalom, 1996), the
suboptimal adaptive algorithm (Tugnait, 1982a), the detection
estimation algorithm (Tugnait, 1982b), etc. (Elliott, Dufour, &
Sworder, 1996; Ho, 2011; Johnston & Krishnamurthy, 2001; Liu,
Zhang, &Wang, 2011; Svensson& Svensson, 2010). The reweighted
IMM algorithm proposed in Johnston and Krishnamurthy (2001)
improved the IMM algorithm by computing the weights via MAP
sequence estimation algorithm. Based on an alternative switching
model, which forces the dynamic models to persist for at least a
model-specific time, a state estimation algorithm was proposed
in Svensson and Svensson (2010). In Ho (2011), using two IMM-
EV algorithms via switching from one IMM-EV algorithm to the
other, the estimation of the system statewas obtained. By reducing
the approximations used in the suboptimal adaptive algorithm,
a truncated approximation based algorithm was proposed in
Liu et al. (2011), which showed better performance than the
suboptimal adaptive algorithm. Using the reference probability
method and the change of measure in discrete time, finite-
dimensional filters were obtained in Elliott et al. (1996). The state
estimation problem for DTMJLSs based on other criteria was also
studied (Alessandri, Baglietto, & Battistelli, 2010; Costa, 1994;
Orguner & Demirekler, 2008; Zhang, 1999). In Costa (1994), the
state estimation problem for DTMJLSs was investigated in the
sense of linear MMSE. Using geometric arguments, a suboptimal
algorithm, called the linear minimummean square estimator, was
proposed. Using an optimal control approach, a finite-dimensional
recursive filter was developed in Zhang (1999), which is optimal
in the sense of the most probable trajectory estimate. The state
estimation problem based on the maximum likelihood criterion
was considered in Alessandri et al. (2010) and a risk-sensitive
multiple-model filtering algorithm was derived in Orguner and
Demirekler (2008). The above mentioned research results were
concerned with hidden Markov models, that is, the state of the
Markov chain is unmeasured. More recently, the state estimation
problem for DTMJLSs with delayed mode measurements has been
dealt with in Liu and Hu (2014); Matei and Baras (2011); Matei,
Martins, and Baras (2008) where the delayed mode measurement
means that the state of the Markov chain cannot be measured
instantaneously but it can be measured after a delay. However, all
of the aforementioned literatures require the constraint that the
measurement noise must be white.

The state estimation problem for systems with time-correlated
measurement noise has been widely studied where the time-
correlated noise is often described by a linear system model
with white noise. When the measurement noise is the output
of a linear system driven by white noise, the measurement
differencing method is effective to remove the time-correlated
portion of the measurement (Bryson & Johansen, 1965). Using
this method, the state estimation problem of discrete-time linear
systems in the sense of linear MMSE was studied in Bryson and
Henrikson (1968) and Petovello, O’Keefe, Lachapelle, and Cannon
(2009). The above results were extended in Liu (2015) to consider
multiplicative noises. More recently, the Gaussian approximation
smoothing estimation for nonlinear systems with time-correlated
measurement noise has been investigated in Wang, Liang, Pan,
Zhao, and Yang (2015), and an optimal filtering algorithm for
discrete-time linear systems with time-correlated multiplicative
measurement noises has been developed in Liu (2016). However,
all these results about time-correlated noise do not consider the
case of DTMJLSs. To the best of our knowledge, the state estimation
problem for DTMJLSs with time-correlated measurement noise

described by a linear system model with white noise has not
been investigated. In fact, the case of white measurement noise
is hard to be satisfied and the white measurement noise is only
an ideal case. For examples, in wireless communication and global
navigation satellite systems, themeasurement noises are generally
time-correlated (Mihaylova, Angelova, Bull, & Canagarajah, 2011;
Petovello et al., 2009; Wang, Li, & Rizos, 2012). When these
characteristics of correlated noise are not fully accounted for in the
model, unacceptable performance can often result. Since the time-
correlated noise is often described by a linear system model with
white noise, it is necessary to consider this kind of correlated noise
that appears in DTMJLSs.

In this paper, we consider the state estimation problem for
DTMJLSs with time-correlated measurement noise which is the
output of a discrete-time linear system with white noise. The
main aim of this paper is to design state estimation algorithms
for the systemunder consideration. Themeasurement differencing
method has been used in dynamic systems with time-correlated
measurement noise to tackle the state estimation problem (Bryson
& Johansen, 1965; Bryson & Henrikson, 1968; Liu, 2015; Petovello
et al., 2009;Wang et al., 2015). However, themethod is not applied
to the state estimation problem of DTMJLSs due probably to its
mathematical complexity. We point out that the measurement
differencing method can be used in DTMJLSs with time-correlated
measurement noise to solve the state estimation problem. The
main contributions of this paper can be highlighted as follows:
(1) An optimal algorithm for state estimation of the system
under consideration is proposed in the sense of MMSE. (2) Since
the proposed optimal algorithm requires exponentially increasing
computational and storage load with time, using some Gaussian
hypotheses, a suboptimal algorithm is developed to limit the
computational requirements. More specifically, at the kth step, the
suboptimal algorithm uses the assumption that the conditional
probability density function of the system state at time k − 1
given a sequence of a new measurement up to k − 1 and any
state of the Markov chain at time k − 1 is Gaussian where the
newmeasurement is obtained from themeasurement differencing
method. (3) The developed suboptimal algorithm has time-
independent complexity and is suitable for online applications.
It is worth mentioning that, in order to obtain the two new
algorithms, an equality about the conditional mean of system
state is proved. More precisely, we prove an equality between the
conditional mean of system state given an original measurement
sequence and the conditional mean of system state given another
new measurement sequence where the new measurement is the
difference between the original measurement at the present time
and the product of a matrix and the original measurement at the
previous time.

This paper is organized as follows. In Section 2, the problem
under consideration is formulated. An optimal algorithm is
proposed in Section 3, and a suboptimal algorithm is developed
in Section 4. In Section 5, using an example of maneuvering target
trackingwhose statemeasurement is corrupted by time-correlated
noise, the performance of the proposed suboptimal algorithm is
evaluated by comparing with the IMM and GPB2 algorithms based
on three criteria, namely RMS x–y position and velocity errors
defined in this section as well as the probability of each mode over
time. The conclusion is provided in Section 6.

Notation: The n-dimensional real Euclidean space is denoted by
Rn. For a matrix A, AT, A−1 and |A| represent its transpose, inverse
and determinant, respectively. For two random vectors x and y, the
conditional mean and covariance matrix of x given y are denoted
by E[x|y] and Var(x|y), respectively.
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