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a b s t r a c t

In this paper, we consider the problem of determining the maximal contractively invariant ellipsoids
for discrete-time linear systems with multiple inputs under saturated linear feedback. We propose an
algebraic computational approach to determining such maximal contractively invariant ellipsoids. We
divide the state space into several regions according to the saturation status of each input, and compute
the possible maximal contractively invariant ellipsoids on each region except the region where none of
inputs saturate and on their intersections. The minimal one among these possible maximal contractively
invariant ellipsoids is the maximal contractively invariant ellipsoids of the system. Simulation results
demonstrate the effectiveness of our methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For a linear system asymptotically null controllable by bounded
controls, except for very special cases, saturated linear feedback
can only achieves local asymptotical stabilization (Sussmann &
Yang, 1991). A linear system is said to be asymptotically null
controllable with bounded controls if it is stabilizable in the usual
linear systems theory sense and all its open loop poles are in the
closed left-half plane. For such a system under saturated linear
feedback, its domain of attraction in general cannot be analytically
characterized. This raises an important problemof how to estimate
its domain of attraction. Much effort has been made on this
problem (Alamo, Cepeda, & Limon, 2005; Alamo, Cepeda, Limon, &
Camacho, 2006a,b; Dai, Hu, Teel, & Zaccarian, 2009; Gomes da Silva
& Tarbouriech, 1999, 2001; Hu & Lin, 2002a, 2005; Milani, 2002;
Pittet, Tarbouriech, & Burgat, 1997; Tarbouriech, Garcia, Gomes
da Silva, & Queinnec, 2011). For example, the authors of Alamo
et al. (2006a) used a polyhedral SNS invariant set, which embeds
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the characteristics of saturation functions, as an estimate of the
domain of attraction of discrete-time saturated linear systems. In
Gomes da Silva and Tarbouriech (1999), a necessary and sufficient
condition to determine the contractivity of polyhedral regions has
been presented for linear discrete-time systems with saturating
controls. Moreover, a Lyapunov function is composed from a group
of quadratic Lyapunov functions (Hu & Lin, 2005). The level set
of this composite Lyapunov function, which is the convex hull
of the ellipsoids corresponding to the level sets of the individual
quadratic Lyapunov functions, leads to a larger estimate of the
domain of attraction (Hu & Lin, 2005).

As one of the most commonly used invariant sets, the
ellipsoid, as the level set of the quadratic Lyapunov function,
has been widely used in estimating the domain of attraction of
saturated linear systems (Alamo et al., 2005; Gomes da Silva &
Tarbouriech, 2001; Hu & Lin, 2001, 2002a; Tarbouriech et al.,
2011). Based on the convex hull representation of saturated linear
feedback, an optimization problem with a set of LMI constraints
has been formulated to obtain a large contractively invariant
ellipsoid (Alamo et al., 2005; Hu & Lin, 2002a). Since these
constraints are only sufficient conditions for an ellipsoid to be
contractively invariant, the resulting optimal ellipsoid is generally
not the maximal contractively invariant ellipsoid. However, for
both continuous-time and discrete-time linear systems with a
single input under saturated linear feedback, it is proven in Hu
and Lin (2002b, 2005) that these sufficient LMI conditions are
also necessary, and hence the optimal ellipsoid resulting from
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the optimization problem is actually the maximal contractively
invariant ellipsoid. With multiple inputs under saturated linear
feedback, the optimal ellipsoid can be the maximal contractively
invariant ellipsoid only when certain additional conditions are
satisfied (Hu & Lin, 2003). For general continuous-time linear
systems with multiple inputs under saturated linear feedback, an
algebraic computational approach was developed for determining
the maximal contractively invariant ellipsoid (Li & Lin, 2015).
For general discrete-time linear systems under saturated linear
feedbacks, a set of necessary and sufficient conditions were
presented in Fiacchini, Prieur, and Tarbouriech (2013) that
characterize the invariance and contractivity of convex sets.

In this paper, we carry out the characterization of the maximal
contractively invariant ellipsoid associated with a given positive
definite matrix for discrete-time linear systems with m inputs
under saturated linear feedback. An algebraic computational
approach to determining such maximal contractively invariant
ellipsoids is developed as follows. We first divide the state
space into several regions according to the saturation status of
each input. We then compute the possible maximal contractively
invariant ellipsoid on each region except the one where none
of inputs saturate, and then determine the minimal one among
these possible maximal contractively invariant ellipsoids whose
extreme states reside in the corresponding regions. Next, we
compute the possible maximal contractively invariant ellipsoids
on intersections between some regions, where there are k inputs
that simultaneously critically saturate, k = 1, 2, . . . ,m − 1.
The smallest one of these ellipsoids determined above is then the
maximal contractively invariant ellipsoid for discrete-time linear
systems with multiple inputs under saturated linear feedback.

To apply this algebraic computational method, we need to
solve certain polynomial equations or compute the eigenvalues
of certain matrices. Software tools exist that could easily carry
out such computation, for example, the polynomial toolbox of
Matlab. However, the amount of computation associated with
this algebraic computational method increases exponentially with
the dimensions of the state and input. Note that the algebraic
computational method applies to any linear system with multiple
inputs under saturated linear feedbacks.

Control based on discrete-time saturated system models is
extensively adopted in the practice systems subject to actuator
saturation. Hence, it is necessary to analyze stability of the
discrete-time saturated systems including the maximal contrac-
tively invariant ellipsoid. The algebraic computational approach
aforementioned to determine the maximal contractively invariant
ellipsoid is a counterpart to our recent result in Li and Lin (2015).
The algebraic computation in this paper is however not a direct
generalization of that in Li and Lin (2015), as the computational
details in the discrete-time setting are significantly different from
those in continuous-time setting.

The remainder of the paper is organized as follows. In
the preliminaries section, we recall some relevant results on
ellipsoidal invariant sets of discrete-time linear systems under
saturated linear feedback. In Section 3, we propose an algebraic
computational method to determine the maximal contractively
invariant ellipsoid for discrete-time linear systems with multiple
inputs under saturated linear feedback. In Section 4, numerical
examples are given to demonstrate the effectiveness of the results
in this paper. Section 5 concludes the paper.

We will use standard notation. For a vector u = [u1 u2 . . . um]
T,

|u|∞ := maxi |ui|. For two integers k1, k2, k1 < k2, I[k1, k2] :=

{k1, k1 + 1, . . . , k2}. For a positive definite P ∈ Rn×n and a positive
scalar ρ, E(P, ρ) := {x ∈ Rn

: xTPx ≤ ρ}. For a set S, we use S◦ and
∂S to denote its interior and its boundary. For a matrix H ∈ Rm×n,
L(H) := {x ∈ Rn

: |Hx|∞ ≤ 1}. For a matrix A, He(A) = AT
+ A. In

stands for an n-dimensional identity matrix.

2. Preliminaries

Consider the following discrete-time system

x+
= Ax + Bsat(Fx), (1)

where x ∈ Rn denotes the state vector, x+ is the successor state, F ∈

Rm×n is the feedback gain, and sat : Rm
→ Rm denotes the vector

valued standard saturation function, which is defined as sat(u) =

[sat(u1), sat(u2), . . . , sat(um)]T, sat(ui) = sgn(ui)min{1, |ui|}. A
signal ui is said to saturate if |ui| > 1 and it is said to saturate
critically if |ui| = 1. Given a positive definitive matrix P ∈ Rn×n,
let V (x) = xTPx. The ellipsoid E(P, ρ) is said to be contractively
invariant if

1V (x) = V (x+) − V (x)
= (Ax + Bsat(Fx))TP(Ax + Bsat(Fx)) − xTPx
< 0, ∀x ∈ E(P, ρ) \ {0}.

In this paper, we assume that, for the given matrix P , (A +

BF)TP(A + BF) − P < 0. This assumption is necessary since it
guarantees the existence of a contractively invariant ellipsoid for
system (1).We further assume system (1) is local stable, and hence
the maximal contractively invariant ellipsoid exists. The following
fact is clear.

Fact 1. Let

ρc := sup{ρ > 0 : E(P, ρ) is contractively invariant}.

Then, a ρ∗ > 0 is such that ρ∗
= ρc if and only if 1V (x) < 0,

∀ x ∈ E◦(P, ρ∗) \ {0}, and 1V (x0) = 0 for some x0 ∈ ∂E(P, ρ∗).

For later use in this paper, we denote themaximal contractively
invariant ellipsoid as E(P, ρc), and refer to an x0 ∈ ∂E(P, ρc) such
that 1V (x0) = 0 as the extreme state.

We next recall the convex hull representation of a saturated
linear feedback from Hu and Lin (2001). Let D denote the set of
m × m diagonal matrices whose diagonal elements are either 1 or
0. There are 2m such matrices in D , and we label them as Di, i ∈

I[1, 2m
]. Denote D−

i = I − Di. Clearly, D−

i ∈ D .

Lemma 2 (Hu & Lin, 2001). Let F ,H ∈ Rm×n. Then, for any x ∈

L(H),

sat(Fx) ∈ co

DiFx + D−

i Hx : i ∈ I[1, 2m
]

,

where co stands for the convex hull.
By Lemma 2, the m-dimensional nonlinear function sat(Fx)

is expressed as a linear combination of the 2m auxiliary linear
feedbacks. With this expression, the conditions under which the
ellipsoid E(P, ρ) is a contractively invariant set of the closed
system (1) were established in Hu and Lin (2001) as follows.

Theorem 3. Given an ellipsoid E(P, ρ). If there exists an H ∈ Rm×n

such that

(A + B(DiF + D−

i H))TP(A + B(DiF + D−

i H))

− P < 0, ∀ i ∈ I[1, 2m
],

and E(P, ρ) ⊆ L(H), then E(P, ρ) is contractively invariant for
system (1).

Theorem 3 provides a set of sufficient conditions under which
E(P, ρ) is contractively invariant. Moreover, as established in Hu
and Lin (2005), for single input systems, that is, m = 1, the
resulting linearmatrix inequalities that characterize the invariance
of an ellipsoid E(P, ρ) are also necessary.

Next, we will focus on the largest invariant ellipsoid E(P, ρ)
that satisfies the conditions of Theorem 3 for a given positive
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