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a b s t r a c t

The problem of finite-time state-feedback stabilizability of discrete-time nonlinear systems has been
considered in this technical communique. Two assertions have been proved. First, if the system is
N-step controllable to the origin, then there is a state feedback control law for which the trajectory of the
closed-loop system converges to the origin inN steps. Second, if the system is asymptotically controllable
to the origin and satisfies the controllability rank condition at the origin, then there is a state feedback
control law for which the trajectory of the closed-loop system converges to the origin in finite steps.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

From control theoretic point of view, one of themost important
properties of a system is stability. Controllability assures the
existence of an open-loop control law, but in many cases, a state-
feedback control law is preferable.

For continuous-time systems, the relation between asymptotic
controllability and state-feedback stabilizability has been estab-
lished in Clarke, Ledyaev, Sontag, and Subbotin (1997). In Clarke
et al. (1997), it has been shown that there is a discontinuous state
feedback stabilizing control law for a system which is asymptot-
ically controllable. Because the discontinuity of the control law
arises naturally in stabilization and optimization problems, discon-
tinuous control laws have been studied inmany papers, e.g. Ceragi-
oli (2002), Clarke (2011), Clarke, Ledyaev, Rifford, and Stern (2000),
and Rifford (2002). Regarding the time-scale, the stability property
is classified into two categories: asymptotic property and finite-
time property, and recently, there has been a growing interest on
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the latter property (Bhat & Bernstein, 2000; Haimo, 1986; Huang,
Lin, & Yang, 2005; Moulay & Perruquetti, 2006).

For discrete-time systems, problems related to controllability
have been extensively studied in Albertini and Sontag (1994),
Jakubczyk and Sontag (1990) and Sontag and Wirth (1998).
However, theseworks donot dealwith state-feedback stabilization
problem. State feedback stabilization problem of discrete-time
nonlinear systems has been studied for past decades (e.g. Byrnes,
Lin, & Ghosh, 1993; Jiang, Lin, & Wang, 2004; Jiang & Wang,
2001; Kazakos& Tsinias, 1994; Ornelas-Tellez, Sanchez, Loukianov,
& Rico, 2014), but researches dealing with nonsmooth or
discontinuous control laws are relatively rare (Meadows, Henson,
Eaton, & Rawlings, 1995; Simões, Nijmeijer, Tsinias, & Sontag,
1996). The connection between controllability and stabilizability
has been analyzed in an early work by Sontag for piecewise
linear systems (Sontag, 1981). In Sontag (1981), both finite-
time stability and asymptotic stability have been analyzed, but
the scope is limited to piecewise linear systems. More general
systems have been dealt with in Kellet and Teel (2004) and
Kreisselmeier and Birkhölzer (1994), but they concentrate on
asymptotic properties. To the best of the author’s knowledge, the
connection between controllability to the origin and finite-time
state-feedback stabilizability has not been investigated for systems
more general than piecewise linear systems. The objective of this
technical communique is to fill the gap.

In the following, we prove two facts. First, if a discrete-time
nonlinear system is N-step controllable to the origin (precise
definition of this notion is given below), then there is a (possibly
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discontinuous) state feedback control law for which the trajectory
of the closed-loop system converges to the origin in N steps.
Second, if the system is asymptotically controllable to the origin
and satisfies the controllability rank condition at the origin (again,
precise definitions of these notions are given below), then there
is a (possibly discontinuous) state feedback control law for which
the trajectory of the closed-loop system converges to the origin
in finite steps (the required steps may differ for different initial
conditions). Our construction explicitly uses the axiom of choice.

A preliminary version of thismanuscript is available in arxiv.org
(Hanba, 2015).

2. Main results

Consider a discrete-time time-invariant nonlinear systemof the
form

x(t + 1) = f (x(t), u(t)), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
t ∈ Z≥0 is the time, and Z≥0 denotes the set of nonnegative
integers. It is assumed that (x, u) = (0, 0) is an equilibrium of (1),
that is, f (0, 0) = 0. Henceforth, we use the following notations:
u[t0, t1] denotes the finite sequence of inputs (u(t0), . . . , u(t1)),
and u[t0,∞) denotes the infinite sequence of inputs (u(t0), u(t0 +

1), . . .). We identify u[ti, ti] with u(ti), and u[ti, tj] with the empty
sequence if tj < ti. For t ≥ t0, φ(t, t0, x0, u) denotes the
trajectory of (1) initialized at t = t0 by x0 and driven by the
input (with φ(t0, t0, x0, u) = x0), and it is also interpreted as
the composition of functions defined recursively: φ(t, t0, x0, u) =

f (φ(t − 1, t0, x0, u), u(t − 1)). In the subsequent analysis, we
sometimes fix t at some N and regard φ(N, t0, x0, u) as a function
of x0 and u[t0,N−1]. The notationφ(t, t0, x0, u) implicitly assumes
that the input is at least defined over the time interval [t0, t − 1].
Because we are dealing with a time-invariant system, the value of
the initial time t0 is immaterial. Hence, without loss of generality,
we assume that t0 = 0.

Properties related to controllability have been used by many
researchers for different meanings. The following two definitions
are analogous to the one employed in Sontag (1981).

Definition 1. The system (1) is said to be N-step controllability to
the origin if ∃N > 0, ∀x0 ∈ Rn, ∃u[0,N − 1], φ(N, 0, x0; u) = 0.

Definition 2. The system (1) is said to be asymptotically control-
lability to the origin if ∀x0 ∈ Rn, ∃u[0,∞), φ(t, 0, x0; u) converges
to the origin as t → ∞.

Another popular notion on controllability is the generalization
of controllability rank condition of linear systems to nonlinear
systems given below.

Definition 3. The system (1) is said to be rank controllable at the
origin if ∃N > 0,

rank
∂φ(N, 0, x0, u)
∂u[0,N − 1]

= n (2)

on an open neighborhood of (x, u(0), . . . , u(N − 1)) = (0, 0,
. . . , 0), where ∂φ(N, 0, x0, u)/∂u[0,N − 1] denotes the partial
derivative ofφwith respect to the variable u[0, . . . ,N−1]with the
re-interpretation that u[0, . . . ,N − 1] is the vector (uT (0), uT (1),
. . . , uT (N − 1))T , and ·

T denotes the transpose of a vector.

In Sontag andWirth (1998), the rank condition (2) does not have an
explicit name, but a tuple (x, u(0), . . . , u(N−1)) that satisfies (2) is
called ‘regular’. Note thatwe are specializing at (x, u(0), . . . , u(N−

1)) = (0, 0, . . . , 0).

Remark 1. Definitions 1 and 2 are conditions that are not
checkable for general nonlinear systems and should blindly be
assumed, except for polynomial systems with rational coefficients
(Nešić & Mareels, 1998). On the other hand, for a discrete-
time nonlinear system, φ(t, 0, x0; u) is merely a composition
of known functions, hence Definition 3 is checkable, although
computationally demanding.

Because we are dealing with a time-invariant system, it is
preferable that our controller is time-invariant as well.

Definition 4. The system (1) is said to be (globally) finite-time
stabilizable by a state feedback controller if there is a control law
υ(x) defined in Rn with the property that

∀x0 ∈ Rn, ∃Nx > 0, φ(Nx, 0, x0; υ(x)) = 0.

On the other hand, if

∃N > 0, ∀x0 ∈ Rn, φ(N, 0, x0; υ(x)) = 0,

then the system (1) is said to be (globally) N-step stabilizable by a
state feedback controller.

Because we do not deal with local property in this technical
communique, henceforth, we omit the term ‘global’.

Our first objective is to show the following proposition, which
is a straightforward extension of the result given in Sontag (1981)
for piecewise linear systems.

Lemma 1. The system (1) is N-step controllable to the origin if and
only if it is N-step stabilizable by a state feedback controller.

Proof. One direction is straightforward: if (1) N-step stabilizable
by a state feedback controller, it isN-step controllable to the origin
by the input determined by the controller.

For the converse, let A0 = {0}, and inductively define Ak = {x ∈

Rn
: ∃u, f (x, u) ∈ Ak−1}. Because the system is N-step controllable

to the origin, AN = Rn. For the sequence (A0, A1, . . . , AN) and each
x ∈ Rn, let

ix = min{i : x ∈ Ai}. (3)

If ix = 0, let υ(x) = 0 (recall that A0 = {0}). Otherwise, the set
Ux = {u : f (x, u) ∈ Aix−1} is nonempty. Pick an element ux ∈ Ux
(here, we use the axiom of choice), and let υ(x) = ux. Because ix is
uniquely determined for each x, υ(x) is well defined. Let (xt)t∈Z≥0
be the trajectory of (1) initialized with x0 and driven by the control
law υ(x), that is, xt = φ(t, 0, x0; υ(x)). We prove that ixt = 0
for some t ≤ N by contradiction. Suppose that ∀t , ixt > 0. Then,
x0 ∈ Aix0

for some ix0 ≤ N and hence x1 = f (x0, υ(x0)) ∈ Aix0−1,
and by (3), ix1 ≤ ix0 −1. Inductively, assume that xj ∈ Aixj

with ixj ≤

ix0 − j. Then, xj+1 = f (xj, υ(xj)) ∈ Aixj−1, hence ixj+1 ≤ ix0 − (j+1).
Therefore, for any j, ixj ≤ ix0 − j. But this is impossible, because
0 ≤ ix0 ≤ N and 0 ≤ ixj ≤ N . �

Remark 2. In Kellet and Teel (2004), the following fact is shown
(Theorem 15 of Kellet and Teel (2004)) (in this manuscript, the
input space U and the target set A of Kellet and Teel (2004) are
Rm and {0}, respectively, hence we omit them in quoting the result
of Kellet and Teel (2004)).

Let σ : [0,∞) → [0,∞) be a nondecreasing function, Bu =

{u ∈ Rm
: ∥u∥ ≤ 1}, and define the set-valued map F(x)

by F(x) = f (x, σ (∥x∥)Bu). If F(x) is continuous in the sense of
Kellet and Teel (2004), F(x) is a non-empty compact set for each
x, and (1) is uniformly globally asymptotically controllable to
the origin with σ controls in the sense of Kellet and Teel (2004),
then there is a feedback function such that the origin is robustly
globally asymptotically stable.
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