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a b s t r a c t

This paper studies an optimal portfolio selection problem in the presence of the Maximum Value-at-
Risk (MVaR) constraint in a hidden Markovian regime-switching environment. The price dynamics of n
risky assets are governed by a hidden Markovian regime-switching model with a hidden Markov chain
whose states represent the states of an economy. We formulate the problem as a constrained utility
maximization problemover a finite timehorizon and then reduce it to solving aHamilton–Jacobi–Bellman
(HJB) equation using the separation principle. The MVaR constraint for n risky assets plus one riskless
asset is derived and the method of Lagrange multiplier is used to deal with the constraint. A numerical
algorithm is then adopted to solve the HJB equation. Numerical results are provided to demonstrate the
implementation of the algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In modern finance, optimal portfolio allocation of different
assets is a prominent issue. Markowitz (1952) pioneered the use
of a mean–variance approach in formulating optimal allocation
problems. His approach reduces the problem to the situation
that one only needs to maximize the expected return under an
acceptable level of risk in a single period. The risk level ismeasured
by the variance of the return. Then, Merton (1969, 1971) extended
this single-period model to a continuous-time framework which
reflects the market environment better. Closed form solutions
were then derived using stochastic optimal control techniques
with the premise that the coefficients in the price process of the
risky assets are constant. However, this assumption may not be
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realistic. Therefore, some researchers started investigating asset
allocation models with non-constant parameters. For example,
Boyle and Yang (1997) employed a multi-factor stochastic interest
ratemodel fromDuffie and Kan (1996) for the bond price dynamics
in their asset allocation model. Lim and Zhou (2002) analyzed a
continuous time mean–variance portfolio selection problem with
randommarket coefficients.

Recently, Markovian regime-switching models have been
widely applied in economics and finance, since it can give a
reasonably good description for some important stylized features
of the price dynamics of assets. The applications of Markov-
switching time series models to economics and econometrics
were introduced by Hamilton (1989). The use of Markovian
regime-switching models for portfolio selection has received
much attention. For example, in Zhou and Yin (2003), the state
of the market model which would affect the parameters in
the stock price process was described by Markovian regime
switchingmodels with observable regimes. The efficient portfolios
were derived explicitly in closed forms for their Markowitz
mean–variance portfolio selection model using techniques of
stochastic linear–quadratic control. In Elliott, Siu, and Badescu
(2010), they modeled the evolution of the state of the economy by
a hiddenMarkov chain model and assumed that the ‘‘true’’ state of
the underlying economy is unobservable. An explicit solution was
derived in theirmean–variance portfolio selectionmodel using the
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stochastic maximum principle. Honda (2003) studied the optimal
portfolio choice when the mean returns of a risky asset depend
on a hidden Markov chain. Some other works on optimal asset
allocation in hiddenMarkovian regime-switching economy are, for
example, Baeuerle and Rieder (2007), Elliott and Siu (2012), Korn,
Siu, and Zhang (2011), Sass and Haussmann (2004), Shen and Siu
(2015) and Siu (2011, 2012, 2013, 2015, 2016), amongst others.

Value-at-Risk (VaR) is one of the popular risk measures used
in market risk management. Informally speaking, VaR describes
the maximum expected loss during a given period at a given
level of confidence. VaR has been used as a risk constraint in
portfolio optimization. For example, Basak and Shapiro (2001)
considered the optimal portfolio policies when VaR is imposed
as a constraint though they pointed out that the use of the VaR
constraint may lead to sub-optimal results. Yiu (2004) derived
the VaR constraint for multiple risky assets and a riskless asset,
and found that investments in risky assets are reduced when the
VaR constraint becomes active. Typically, VaR is derived under the
assumption that the parameters, such as interest rate, drift and
volatility, in the price dynamics of assets are assumed to be known
beforehand so that some standard distributions such as a normal
distribution may be applied to compute VaR. However, if these
parameters depend on the state of the underlying economy which
may switch over time, then the values of these parameters may be
uncertain or unknown. The Maximum Value-at-Risk (MVaR) may
provide a conservative way to describe risks under this situation.
It is defined as the maximum value of the VaRs of the portfolio
at different states of the underlying economy in a given time. Yiu,
Liu, Siu, andChing (2010) discussed autilitymaximizationproblem
constrained by theMVaR. In their paper, the state of the economy is
modeled by an observableMarkov chain.While it seems that there
is a relatively little work on optimal portfolio allocation inmultiple
risky assets in a hidden Markovian regime-switching economy
using the MVaR as a risk constraint.

In this paper we extend the portfolio allocation model with
one risky asset in Yiu et al. (2010) to a more general situation
of multiple risky assets. Furthermore, the state of an economy
was assumed to be observable in Yiu et al. (2010). However, in
practice, the state of the underlying economymay be unobservable
or not directly observable. It is assumed that the hidden state of
the economy is described by a continuous-time hidden Markov
chain. Similar method can be found in Elliott and van der
Hoek (1997). The price dynamics of n risky assets follow an n-
dimensional Geometric Brownian Motion (GBM) where the value
of the drift is supposed to switch over time according to the
states of the underlying hidden Markov chain. The MVaR is
derived for n risky assets plus one riskless asset and imposed as a
constraint. We formulate this optimal portfolio allocation problem
as a constrained utility maximization problem. Then using the
separation principle in Elliott et al. (2010), the problem can be
separated into two problems: a filtering-estimation problem and a
constrained stochastic control problem. A robust form of filtering
equations is presented to estimate the unknown parameters by
applying the gauge transformation techniquewhich is proposed by
Clark (1978) and applied in Elliott,Malcolm, and Tsoi (2003); Elliott
et al. (2010). In this way, solving the constrained stochastic control
problem is converted to solving a Hamilton–Jacobi–Bellman (HJB)
equation, where the MVaR constraint is handled by the method of
Lagrangemultiplier. A numerical algorithm is used to solve the HJB
equation for the optimal constrained portfolio numerically.

The rest of this paper is structured as follows. In Section 2,
the price dynamics of n risky assets are presented. The optimal
portfolio selection problem without constraint is formulated as a
maximization of the expected utility over a given period. Section 3
discusses the separation principle. The correspondingMVaR is also
derived to describe investment risks. In Section 4, the filters for the
hidden states of the economy are presented. In Sections 5 and 6, a
numerical algorithm and numerical results are presented. Finally,
concluding remarks are given in Section 7.

2. Model dynamics and portfolio allocation problem

In this section, we consider a continuous-time economy with
a finite time horizon T := [0, T ]. All of the uncertainties are
described by a complete probability space (Ω, F , P), where P is
a real-world probability measure. Let y′ denote the transpose of
a matrix or a vector y and 1m×n denote an m × n-dimensional
matrix whose entries are all equal to one. The model dynamics
described are those in standard hidden Markovian regime-
switching financial models. Similar models have been used for
portfolio selection in the literature (see, for example, Elliott & Siu,
2012; Elliott et al., 2010; Korn et al., 2011; Sass & Haussmann,
2004; Shen & Siu, 2015; Siu, 2011, 2012, 2013, 2015, 2016, and the
relevant literature therein).

Let X := {X(t)}t≤T be a continuous-time, finite-state Markov
chain with state space ε := {e1, e2, . . . , eN}, where ei is the unit
vector in RN with one in the ith position and zero elsewhere.
This convention of the state space of the chain was adopted in, for
example, Elliott, Aggoun, andMoore (1995). Then as in Elliott et al.
(1995), a semi-martingale representation for the chain is given as
follows:

X(t) = X(0) +

 t

0
AX(u)du + M(t),

where A := [aij]N×N is a time invariant rate matrix of the chain
and {M(t)|t ∈ T } is a martingale under P . The element aij in A is
the instantaneous intensity of the transition of the chain X from
State ej to State ei. Here the states of the chain X are interpreted as
hidden states of an economy.

We consider an optimal portfolio allocation problem with n
risky assets and one riskless asset. Suppose the price process of the
riskless asset which is denoted as S0 := {S0(t)|t ∈ T } follows:

S0(t) = exp(rt) and S0(0) = 1.

Here the interest rate r is assumed to be a positive constant. The
price process of the n risky assets, denoted by S = {S(t)|t ∈ T },
satisfies:

dS(t) = D(S(t))µ(t)dt + D(S(t))σdW (t) and S(0) = s0.

Here {W (t)|t ∈ T } is an n-dimensional standard Brownian
motion and D(S(t)) is the diagonal matrix of the vector S(t) =

(S1(t), . . . , Sn(t))′. The volatility σ = (σij)n×n is a constant non-
singular matrix. Readers interested in stochastic volatility models
can refer to Pham and Quenez (2001). Shen and Siu (2013)
investigated the pricing of variance swaps under stochastic interest
rate and volatility. They incorporated the stochastic interest
rate process and separated it from the volatility process using
techniques of forward measure changes. The situation when
r and σ are time-varying or stochastic processes will lead to
complication in the estimation of the model. In this case, the
standard EM algorithm may not work well and the statistical
properties such as asymptotic properties of the estimatorsmay not
be available. The driftµ(t) is assumed to depend on the state of the
economy and is given as follows:

µ(t) = µX(t),

where µ = (µij) is an n × N matrix.
Both the drift process and the Brownian motion are assumed to

be unobservable to the investor. The only observable information
is the price process S. The importance of incorporating the model
uncertainty of the drift is discussed in, for example, Elliott and
Siu (2012) and Elliott et al. (2010). Instead of considering the
price process directly, we consider the log return process Y :=

{Y (t)|t ∈ T }. Here Y (t) = (Y1(t), Y2(t), . . . , Yn(t))′ and Yi(t) =

ln(Si(t)/Si(0)). It is well-known that by Itô’s lemma,

dY (t) = g(t)dt + σdW (t),



Download English Version:

https://daneshyari.com/en/article/5000153

Download Persian Version:

https://daneshyari.com/article/5000153

Daneshyari.com

https://daneshyari.com/en/article/5000153
https://daneshyari.com/article/5000153
https://daneshyari.com

