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a b s t r a c t

Motivated by the problem of stability in droop-controlled microgrids with delays, we consider a class
of port-Hamiltonian systems with delayed interconnection matrices. For this class of systems, delay-
dependent stability conditions are derived via the Lyapunov–Krasovskii method. The theoretical results
are applied to an exemplary microgrid with distributed rotational and electronic generation and illus-
trated via a simulation example. The stability analysis is complemented by providing an estimate of the
region of attraction of a microgrid with delays.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Time delays are a highly relevant phenomenon in many en-
gineering applications. They appear, e.g., in networked control,
sampled-data and biological systems (Fridman, 2014a). In particu-
lar, time delays may substantially deteriorate the performance of
a system, e.g., with regard to stability properties of its equilibria.
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Therefore, it is of paramount importance in a large variety of appli-
cations to explicitly consider time delays in the system design and
analysis process.

In this paper, we derive conditions for stability of a class of
port-Hamiltonian (pH) systems with delays. PH systems theory
provides a systematic framework for modeling and analysis of
networkmodels of a large range of physical systems and processes
(van der Schaft, 2000; van der Schaft & Jeltsema, 2014). In
particular, the geometric structure of a pH model underscores the
importance of the energy function, the interconnection pattern and
the dissipation of a system. With regard to stability analysis, the
main advantage of a pH representation is that the Hamiltonian
usually is a natural candidate Lyapunov function (van der Schaft,
2000). Unfortunately, in the presence of delays this does not apply
in general. Yet, it seems natural to seek to construct alternative
Lyapunov function candidates by using the Hamiltonian as a point
of departure aiming to exploit the structural properties of pH
systems.

The present work is further motivated by the problem of the
effect of time delays on microgrid (µG) operation. The µG is
an emerging concept for an efficient integration of renewable
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distributed generation (DG) units (Guerrero, Loh, Chandorkar,
& Lee, 2013; Hatziargyriou, Asano, Iravani, & Marnay, 2007). A
µG is a locally controllable subset of a larger electrical network
and is composed of several DG units, storage devices and loads
(Guerrero et al., 2013). A particular characteristic of a µG is that
it can be operated either in grid-connected or in islanded mode,
i.e., disconnected from a larger power system.

Typically, a large share of the power units in aµG are renewable
and storage units connected to the network via DC/AC inverters.
On the contrary, most conventional generation units are interfaced
to the grid via synchronous generators (SGs). As inverters
possess significantly different physical properties from SGs, many
challenging problems arise in future power grids (Guerrero et al.,
2013; Hatziargyriou et al., 2007). Amongst these, system stability
is one of the most relevant and critical (Guerrero et al., 2013).

So far, most stability analysis of µGs has focused on purely
inverter-based µGs (Münz & Metzger, 2014; Schiffer, Ortega,
Astolfi, Raisch, & Sezi, 2014a; Simpson-Porco, Dörfler, & Bullo,
2013). Yet, from a practical point of view, most present and near-
future applications concern µGs with a mixed generation pool
consisting of SG- and inverter-interfaced units. Following Schiffer,
Goldin, Raisch, and Sezi (2013), we refer to such a system as a
µ G with distributed rotational and electronic generation (MDREG).
The predominant type of conventional units in MDREGs are diesel
gensets (Krishnamurthy, Jahns, & Lasseter, 2008) and, hence, we
focus on these in the present work.

The most commonly employed control scheme to operate
MDREGs is droop control. This is a decentralized proportional con-
trol scheme, the main objectives of which are stability and power
sharing. Droop control is the standard basic control scheme for
SG-based networks (Kundur, 1994) and has also been adapted to
inverter-interfaced units (Guerrero et al., 2013). As shown, e.g., in
Schiffer et al. (2013), droop control ensures a compatible joint op-
eration of SG- and inverter-interfaced DG units.

In MDREGs, time delays appear due to several reasons and
also in several network components. First, the power-stroke and
ignition delay of a diesel engine is represented by a time delay
in standard models (Guzzella & Amstutz, 1998; Kuang, Wang, &
Tan, 2000; Roy, Malik, & Hope, 1991). Second, in a practical setup,
the droop control scheme is applied to an inverter, respectively an
SG, via digital control. Digital control usually introduces additional
effects such as clock drifts (Schiffer, Ortega, Hans, & Raisch,
2015b) and time delays (Kukrer, 1996; Maksimovic & Zane, 2007;
Nussbaumer, Heldwein, Gong, Round, & Kolar, 2008), which may
have a deteriorating impact on the system performance. According
toNussbaumer et al. (2008), themain reasons for the appearance of
time delays are sampling of control variables and calculation time
of the digital controller. In the case of inverters, the generation of
the pulse-width-modulation (PWM) to determine the switching
signals for the inverter induces an additional delay. We refer the
reader to, e.g., Nussbaumer et al. (2008) for further details. Hence,
timedelays are a relevant phenomenon inMDREGs,whichmakes it
important to investigate their influence on stability. Thismotivates
the analysis below.

1.2. About the paper

The present paper focuses on the impact of time delays on
stability of MDREGs. To that end, and following Schiffer et al.
(2014a) and Schiffer, Fridman, and Ortega (2015a), we represent
the MDREG as a pH system with delays. Motivated by this, we
derive delay-dependent conditions for stability for a class of pH
systems with delays, containing the MDREG model as a special
case. The stability conditions are established by following Fridman
(2014b), Fridman, Dambrine, and Yeganefar (2008) and Kao and
Pasumarthy (2012) and constructing a nonlinear and non-quadratic

Lyapunov–Krasovskii functional (LKF) from the Hamiltonian and
its gradient. That the LKF can be nonlinear and non-quadratic
follows from the fact that both the Hamiltonian and its gradient
are, in general, nonlinear functions of the system states. Compared
to that, standard LMI-based approaches (Fridman, 2014a,b) rely on
LKFs, which are quadratic in the state variables. The latter is, in
general, very restrictive.

Themain contributions of the present paper are (i) to introduce
a model of a droop-controlled MDREG which explicitly considers
delays of the DG unit dynamics, (ii) to represent thisMDREGmodel
as a pH systemwith fast- and slowly-varying delays, (iii) to provide
stability conditions for a class of pH systems with fast- and slowly-
varying delays via the LKmethod, (iv) to provide an estimate of the
region of attraction of an MDREG with delays and (v) to illustrate
the usefulness of our conditions on an exemplary µG. Hence, the
present paper extends our previous work (Schiffer et al., 2015a)
in several regards: we take diesel engines into account, provide
stability conditions for slowly- and fast-varying delays and derive
an estimate of the region of attraction of an MDREG with delays.

1.3. Existing literature

Stability analysis of pH systems with delays has been the
subject of previous research (Aoues, Lombardi, Eberard, & Di-
Loreto, 2015; Aoues, Lombardi, Eberard, & Seuret, 2014; Kao
& Pasumarthy, 2012; Pasumarthy & Kao, 2009; Yang & Wang,
2010). The main motivation of that work is a scenario in which
several pH systems are interconnected via feedback paths which
exhibit a delay. This setup yields a closed-loop system with skew-
symmetric interconnections, which can be split into non-delayed
skew-symmetric and delayed skew-symmetric parts. However,
the model of an MDREG with delays derived in this work is not
comprised in the class of pH systems studied in Aoues et al.
(2014), Kao and Pasumarthy (2012), Pasumarthy and Kao (2009)
and Yang and Wang (2010), since the delays do not appear skew-
symmetrically. In that regard, the class of systems considered in
the present work generalizes the class studied in Aoues et al.
(2014), Kao and Pasumarthy (2012), Pasumarthy and Kao (2009)
and Yang and Wang (2010), see Section 3. Unlike (Aoues et al.,
2014; Kao & Pasumarthy, 2012; Pasumarthy & Kao, 2009), we
also provide conditions for stability in the presence of fast-
varying delays, which typically arise in the context of digital
control (Fridman, 2014b; Liu & Fridman, 2012). In addition, we
apply the derived approach to a practically relevant application,
namely an MDREG. Compared to this, in Aoues et al. (2014), Kao
and Pasumarthy (2012), Pasumarthy and Kao (2009) and Yang
and Wang (2010) only academic examples were considered. The
effect of time delays on µG stability has only been investigated
in Efimov, Ortega, and Schiffer (2015) and Efimov, Schiffer, and
Ortega (2016) for a two-inverter-scenario. In particular, none of the
aforementioned analyses on µG stability (Münz & Metzger, 2014;
Schiffer et al., 2013, 2014a; Simpson-Porco et al., 2013) take the
effect of time delays into account.

The remainder of the paper is structured as follows. A model
of an MDREG with delays is derived in Section 2. In Section 3, the
considered class of pH systemswith delays is introduced, forwhich
delay-dependent conditions for stability are provided in Section 4.
In Section 5, the results are applied to an exemplary MDREG for
which we also provide an estimate of the region of attraction.
Conclusions and topics of future work are given in Section 6.

Notation. We define the sets n̄ = {1, 2, . . . , n}, R≥0 = {x ∈

R|x ≥ 0}, R>0 = {x ∈ R|x > 0}, R<0 = {x ∈ R|x < 0},
Z≥0 = {0, 1, 2, . . .}. For a set V , let |V| denote its cardinality.
For a set of, possibly unordered, positive natural numbers V =

{l, k, . . . , n}, the short-hand i ∼ V denotes i = l, k, . . . , n. Let
x = col(xi) ∈ Rn denote a vector with entries xi for i ∼ n̄, 0n



Download English Version:

https://daneshyari.com/en/article/5000168

Download Persian Version:

https://daneshyari.com/article/5000168

Daneshyari.com

https://daneshyari.com/en/article/5000168
https://daneshyari.com/article/5000168
https://daneshyari.com

