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a b s t r a c t

We study the stability properties of a susceptible–infected–susceptible (SIS) diffusion model, so-called
the n-intertwined Markov model, over arbitrary directed network topologies. As in the majority of the
work on infection spread dynamics, this model exhibits a threshold phenomenon. When the curing
rates in the network are high, the disease-free equilibrium is the unique equilibrium over the network.
Otherwise, an endemic equilibrium state emerges, where some infection remains within the network.
Using notions from positive systems theory, we provide novel proofs for the global asymptotic stability
of the equilibrium points in both cases over strongly connected networks based on the value of the basic
reproduction number, a fundamental quantity in the study of epidemics. When the network topology is
weakly connected, we provide conditions for the existence, uniqueness, and global asymptotic stability
of an endemic state, and study the stability of the disease-free equilibrium. Finally, we demonstrate that
the n-intertwined Markov model can be viewed as a best-response dynamical system of a concave game
among the nodes. This characterization allows us to cast new infection spread dynamics; additionally,
we provide a sufficient condition for global convergence to the disease-free equilibrium, which can be
checked in a distributed fashion.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Epidemiological models for disease spread among humans con-
stitute important classes of spread dynamics, as they can poten-
tially provide models for many engineering related phenomena
such as the spread of viruses in computer networks (Ganesh, Mas-
soulié, & Towsley, 2005; Goffman&Newill, 1967; Kephart &White,
1991; Van Mieghem, Omic, & Kooij, 2009). There is a vast litera-
ture on various aspects of epidemiological models and the study
of infection propagation over networks (Kephart & White, 1991;
Pastor-Satorras & Vespignani, 2001; Wang, Chakrabarti, Wang, &

✩ Research supported in part by an AFOSR MURI Grant FA9550-10-1-0573 and
an NSERC Discovery Grant NSERC-RGPIN-2014-05387. The material in this paper
was partially presented at the 2014 American Control Conference, June 4–6, 2014,
Portland, OR, USA (Khanafer, Başar, & Gharesifard, 2014a) and at the 53rd IEEE
Conference on Decision and Control, December 15–17, 2014, Los Angeles, CA,
USA (Khanafer, Başar, & Gharesifard, 2014b). This paper was recommended for
publication in revised form by Associate Editor Mario Sznaier under the direction
of Editor Richard Middleton.

E-mail addresses: khanafe2@illinois.edu (A. Khanafer), basar1@illinois.edu
(T. Başar), bahman@mast.queensu.ca (B. Gharesifard).

Faloutsos, 2003) and the references therein. Characterization of
the stability properties of such diffusion dynamics is a crucial first
step towards designing efficient algorithms for controlling their
evolutions. Most dynamical epidemiological models, including the
n-intertwined Markov model (Van Mieghem & Omic, 2013; Van
Mieghem et al., 2009) studied here, can possess two equilibrium
points, under certain conditions: a disease-free state at which the
network is cured, and an endemic state at which the infection per-
sists in the network (Diekmann, Heesterbeek, & Metz, 1990; Fall,
Iggidr, Sallet, & Tewa, 2007; Lajmanovich & Yorke, 1976; Shuai &
van den Driessche, 2013). This has also been observed in time-
varying or switching models that allow for abrupt changes in their
parameters (Rami, Bokharaie, Mason, & Wirth, 2014). A threshold
called the basic reproduction number, whose value depends on the
curing and infection rates across the network as well as the net-
work topology, determines the equilibrium point the state of the
network will converge to Diekmann et al. (1990).

For the n-intertwined Markov model, the basic reproduction
number, introduced as a critical threshold in Van Mieghem et al.
(2009) and Van Mieghem and Omic (2013), characterizes this
threshold phenomenon. In particular, when the basic reproduction
number is less than or equal to 1, the unique equilibrium is the
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disease-free equilibrium; otherwise, the endemic state emerges.
Our aim in this paper is to fully characterize the stability properties
of this model over networks with directed topologies. Moreover,
we use fundamental results from positive systems theory to
construct proofs that could become a starting point for studying
the stability of a variety of epidemiological models that share
similar characteristics with n-intertwined Markov model.

A sufficient condition for the stability of the disease-free
equilibriumover strongly connected digraphs has been established
in Preciado, Zargham, Enyioha, Jadbabaie, and Pappas (2014).
For compartmental susceptible–infected–susceptible (SIS)models,
a necessary and sufficient condition for the global asymptotic
stability of this equilibrium was presented in Fall et al. (2007)
using a linear Lyapunov function. For the same model, the global
asymptotic stability (GAS) of the endemic state over strongly
connected directed graphs has been studied in Ahn and Hassibi
(2013), Fall et al. (2007) and Shuai and van den Driessche (2013)—
see Shuai and van den Driessche (2013) for a summary of other
approaches to establish this result. The results in Ahn and Hassibi
(2013) and Fall et al. (2007) rely on the assumption that the state
of the model will evolve in the strictly positive quadrant when
the state of the network is initialized away from the origin. The
result in Shuai and van den Driessche (2013) was established using
a non-quadratic Lyapunov function, and by relying on advanced
combinatorial results such as Kirchhoff’s matrix tree theorem.

In all the aforementioned results, the underlying graphs were
assumed to be strongly connected (or connected when the graph
is undirected). Nonetheless, weakly connected directed graphs are
common in practice, and characterizing the equilibrium points as
well as their stability over these graphs presents new challenges in
epidemiological networks.

The main contributions of this paper are as follows. First,
using tools from the theory of positive systems, we characterize
the stability properties of the endemic state equilibrium of the
n-intertwined Markov model over strongly connected digraphs.
In particular, we show that when the basic reproduction number
is greater than 1, the endemic state is locally exponentially
stable, and when the network is not initialized at the disease-free
equilibrium, the endemic state is GAS. The proofs we present here
do not make any assumption on the evolution of the state, and
unlike (Shuai & van den Driessche, 2013), the stability properties
are established using a quadratic Lyapunov function that allows us
to avoid relying on advanced combinatorial and graph-theoretic
notions. Moreover, we provide a game-theoretic framework that
subsumes more general classes of infection dynamics. Using this
model, we show that the n-intertwined Markov model prescribes
the best-response dynamics of a concave game. This allows us
to provide a new condition for the stability of the disease-
free equilibrium, which can be checked in a distributed way.
Finally, using our key construction for strongly connecteddigraphs,
our next contribution is to study the existence, uniqueness,
and stability properties of the disease-free and endemic states
over weakly connected digraphs. By studying the input-to-state
stability of the network, we provide conditions for a GAS endemic
state to emerge over weakly connected digraphs. Unlike endemic
states over strongly connected digraphs, we show that at the
endemic states emerging over weakly connected graphs a subset
of the nodes could be healthy while the remaining nodes become
infected.

2. Mathematical preliminaries

All the matrices and vectors in this paper are real valued. For a
set of n ∈ Z≥1 elements, we use the combinatorial notation [n] to
denote {1, . . . , n}. The (i, j)th entry of a matrix X ∈ Rn×m, n,m ∈

Z≥1 is denoted by xij. For two real vectors x, y ∈ Rn, n ∈ Z≥1, we

write x ≫ y if xi > yi for all i ∈ [n], x ≻ y if xi ≥ yi for all
i ∈ [n] but x ≠ y, and x ≽ y if xi ≥ yi for all i ∈ [n]. We say a vector
x ∈ Rn is strictly positive if x ≫ 0. For any vector x ∈ Rn, we define
xmin := mini∈[n] xi and xmax := maxi∈[n] xi. The absolute value of
a scalar variable is denoted by |.|. We also denote the cardinality
of a finite set by |.|. For a square matrix X , its set of eigenvalues
is denoted by σ(X), its spectral radius by ρ(X) = maxλ∈σ(X) |λ|,
and its abscissa is given by µ(X) = maxλ∈σ(X) Re(λ). When the
eigenvalues of amatrix X are real, we denote the largest eigenvalue
byλ1(X) and the smallest eigenvalue byλn(X). The Euclideannorm
of a vector is denoted by ∥.∥2. The induced 2-norm of a matrix
X ∈ Rn×n is given by

∥X∥2 = max
y∈Rn

∥y∥2=1

∥Xy∥2 =


λ1


XTX


.

We use the operator diag(.) for two purposes. When applied to
a square matrix X ∈ Rn×n, diag(X) returns a column vector that
contains the diagonal entries of X . For a vector x ∈ Rn, X = diag(x),
or X = diag(x1, . . . , xn), is a diagonal matrix with Xii = xi, i ∈ [n].
When a diagonal matrix has positive diagonal entries, we call it a
positive diagonal matrix. The identity matrix is denoted by I , and
the all-ones vector is denoted by 1. We assume both I and 1 have
the appropriate dimensions whenever used.

Let f : Rn
→ Rn be a continuously differentiable function that

defines a dynamical system ẋ = f (x), and let x be an equilibrium
point of this system, i.e., f (x) = 0. The Jacobian matrix of f , J(x) ∈

Rn×n, is given by J(x) =
∂
∂x f (x). LetD ⊂ Rn×n be a compact domain

where the trajectories of the dynamical system ẋ = f (x) lie. A
continuously differentiable function V : D → R is a Lyapunov
function if, V (x) = 0 and V (x) > 0 for all x ∈ D \ {x}. The Lie
derivative of V along f is given by Lf V (x) :=

d
dxV (x)T f (x).

Some of our results rely on properties ofMetzler and irreducible
matrices. A real square matrix X is called Metzler if its off-diagonal
entries are nonnegative.We say that amatrixX ∈ Rn×n is reducible
if there exists a permutation matrix T such that T−1XT =


Y Z
0 W


,

where Y and W are square matrices, or if n = 1 and X = 0
(Berman & Plemmons, 1979). A real square matrix is called
irreducible if it is not reducible. A survey on Metzler matrices and
their stability properties can be found in Berman and Plemmons
(1979) and Farina and Rinaldi (2011). Hurwitz Metzler matrices
have the following equivalent characterizations, see Berman and
Plemmons (1979) and Rantzer (2011).

Proposition 1. For a Metzler matrix X ∈ Rn×n, the following state-
ments are equivalent:

(i) The matrix X is Hurwitz.
(ii) There exists a vector ξ ≫ 0 such that Xξ ≪ 0.
(iii) There exists a vector ν ≫ 0 such that νTX ≪ 0.
(iv) There exists a positive diagonal matrix Q such that XTQ +QX =

−K , where K is positive definite.

Graph theory

A directed graph, or digraph, is a pair G = (V, E), where V is the
set of nodes and E ⊆ V ×V is the set of edges. Given G, we denote
an edge from node i ∈ V to node j ∈ V by (i, j). We say node i ∈ V
is a neighbor of node j ∈ V if and only if (i, j) ∈ E . When (i, j) ∈ E
if and only if (j, i) ∈ E , we call the graph undirected. For a graph
with n ∈ Z≥1 nodes, we associate an adjacency matrix A ∈ Rn×n

with entries aij ∈ R≥0, where aij = 0 if and only if (i, j) ∉ E . For
undirected graphs, the adjacency matrix is symmetric.

In a digraph, a directed path is a collection of nodes
{i1, . . . , iℓ} ⊆ V , ℓ ∈ Z>1, such that (ik, ik+1) ∈ E for all k ∈

[ℓ−1]. A digraph is strongly connected if there exists a directed path
between any two nodes in V . A strongly connected component
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