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a b s t r a c t

The paper deals with the energy-based stabilization and speed control of a wheeled inverted pendulum,
which is an underactuated, unstable mechanical system subject to nonholonomic constraints. We use
the method of Controlled Lagrangians for the stabilization of an equilibrium characterized by the length
of the driven path, the orientation, and the pitch angle. The approach is systematic and very intuitive,
for it is physically motivated. Based on the stabilization results, we design a speed control law. After the
presentation of the model under nonholonomic constraints in Lagrangian representation, we provide an
elegant solution to the matching equations for kinetic and potential energy shaping for the considered
system. Simulations show the applicability of the method, and the comparison with a linear controller
emphasizes its performance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The wheeled inverted pendulum (WIP) – and its well-known
commercial version, the Segway (Segway, 2016) – has gained
interest for human assistance or transportation in the past several
years due to its high maneuverability and simple construction
(Li, Yang, & Fan, 2013). A WIP – shown from the side in Fig. 1
(left) – consists of a vertical body with two coaxial driven wheels
mounted on the body. The actuation of both wheels in the same
direction generates a forward (or backward) motion; opposite
wheel velocities lead to a turning motion around the vertical axis.
Mobile robotic systems based on the WIP, like the intelligent two
wheeled road vehicle B2 presented in Baloh and Parent (2003), or
the novel and more car-like Segway PUMA and Chevrolet En-V, are
being developed to be used as new personal urban transportation
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systems (General Motors, 2010; PUMA, 2016). Some institutes
have also developed their ownWIPs for research purposes, e.g., JOE
(Grasser, D’Arrigo, Colombi, & Rufer, 2002) and InPeRo (Nasrallah,
Michalska, & Angeles, 2007), to give only two examples. These
systems can be further used as service robots like KOBOKER (Lee &
Jung, 2011) or moving information platforms like the BallbotmObi
(mObi, 2016).

The stabilization and tracking control for theWIP is challenging:
The system is underactuated, the upward position of the body
represents an unstable equilibrium that needs to be stabilized
by feedback, and, in addition, the system motion is restricted by
nonholonomic (non-integrable) constraints (Bloch, 2003) and is,
thus, not smoothly stabilizable at a point, as proven by Brockett
(Brockett, 1983). Many researchers around the world have put
great effort into designing stabilization and tracking control laws
for the WIP, particularly using linearized models (Grasser et al.,
2002; Li et al., 2013; Muralidharan & Mahindrakar, 2014). During
the last decade, however, a strong focus is set on the nonlinear
model and nonlinear control laws (Kausar, Stol, & Patel, 2012;
Muralidharan, Ravichandran, & Mahindrakar, 2009; Nasrallah
et al., 2007; Pathak, Franch, & Agrawal, 2005). For a very complete
overview of the existing work on modeling and control of WIPs
until 2012, the reader is referred to Chan, Stol, andHalkyard (2013).

Existing methods often do not exploit the mechanical structure
of the system, feature a cumbersome design procedure, or lack
robustness due to a partial feedback linearization. A solution can
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Fig. 1. The wheeled inverted pendulum.

be provided by energy shapingmethods. These control techniques,
like the method of Controlled Lagrangians, or Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC), have
been successfully used for the stabilization of underactuated
mechanical systems (Chang, Bloch, Leonard, Marsden, & Woolsey,
2002; Ortega, Spong, Gómez-Estern, & Blankenstein, 2002) as well
as the speed control for electromechanical systems (Ortega, Loria,
Nicklasson, & Sira-Ramirez, 1998). These methods are attractive,
since they shape the energy of the system but preserve its physical
structure and, thus, appear natural. The idea of shaping the energy
has been also extended to the stabilization of nonholonomic
mechanical systems (Blankenstein, 2002; Maschke & van der
Schaft, 1994). However, for the asymptotic stabilization of a
desired configuration, a discontinuous or time-varying control law
is required (Astolfi, 1996; Brockett, 1983). This can be achieved
via energy shaping by assigning non-smooth potential functions
(Fujimoto, Sakai, & Sugie, 2012).

In this paper, which generalizes and completes the results of
the conference paper (Delgado & Kotyczka, 2015), we present a
feasible and elegant solution of the energy shaping problem for
position and speed control of the WIP. Instead of considering the
six-dimensional manifold Q̃, which represents the configuration
space of the WIP, we restrict our analysis to a lower dimensional
space Q, on which the system evolves unconstrained. Based
on the WIP’s nonlinear model, we design a passivity-based
stabilizing and speed controller (for constant speed references)
in the reduced space Q. Since the closed-loop mechanical-type
energy is used as Lyapunov function, the framework is remarkably
intuitive, for it is physically motivated. The controller is thereafter
parametrized applying local linear dynamics assignment (LLDA), a
method used to fix design parameters in nonlinear passivity-based
control by making use of the linearized model (Kotyczka, 2013).
Note that the simplicity of controller design, in turn, requires
appropriate planning of the trajectories in the reduced space Q.
The applicability and performance of the developed controllers is
shown with a series of simulations. To sum it up, the novelty of
the paper is the systematic and integrated design of a position
and speed controller for the wheeled inverted pendulum system
in a single, energy-based framework. An emphasis is put on the
structural advantages of the approach.
Convention: For compactness, we will use the notation s(α) =

sinα, and c(α) = cosα. When obvious from the context, argu-
ments are omitted for simplicity.

2. Modeling

In a simple mechanical system with k nonholonomic con-
straints, the n-dimensional manifold Q̃ is the configuration space,
its tangent bundle TQ̃ is the velocity phase space and a smooth
non-integrable distributionD ⊂ TQ̃ characterizes the constraints.
The Lagrangian L is a map L : TQ̃ → R and is defined as the kinetic
energyminus the potential energy L = K−V . A curve q(t) is said to
satisfy the constraints if q̇(t) ∈ Dq, for all q ∈ Q̃ and all times t . The
constraint distribution D is assumed to be regular, i.e., of constant
rank n − k.

2.1. The Lagrange–d’Alembert equations

The widely used Lagrange–d’Alembert equations (Bloch, 2003;
Delgado & Kotyczka, 2015; Pathak et al., 2005)

d
dt

(∇q̇L) − ∇qL = A(q)λ +


Fext (1)

describe the dynamics of systems subject to k nonholonomic
(Pfaffian) constraints of the form

AT (q)q̇ = 0, A ∈ Rn×k. (2)

Assuming there are no external forces/torques other than the input
torques τ̃ , the equations of motion (1) have the form

M̃(q)q̈ + C̃(q, q̇)q̇ + ∇qV (q) = τ̃ + A(q)λ, (3)

where M̃ = M̃T > 0 is the positive definite mass matrix, and
the term C̃ q̇ represents the Coriolis and centripetal forces. The
Lagrange multipliers λ ∈ Rk represent the constraint forces to
satisfy (2). Due to these constraints, the admissible velocities at
q ∈ Q̃ must be of the form q̇ = S(q)ν, where S ∈ Rn×n−k is a
full rank matrix satisfying AT S = 0 for all q ∈ Q̃, and ν ∈ Rn−k are
local coordinates of the constrained tangent space. The admissible
velocities at q lie, therefore, in the subspace of TqQ̃ spanned by the
columns of S, i.e., the space Dq. Now, replace q̇ = Sν and q̈ =

Sν̇ + Ṡν in (3), and eliminate the constraints by pre-multiplying it
by ST :

ST M̃Sν̇ + ST (M̃Ṡ + C̃S)ν + ST∇qV = ST τ̃ . (4)

The dynamical system represented by (4) can as well be written in
the form

Mν̇ + Cν + ST∇qV = τ + Jν, (5)

where M = ST M̃S, and τ = ST τ̃ . Since the matrix C is solely
defined by the Christoffel symbols ofM , thematching of the systems
(4) and (5) requires, in general, additional gyroscopic forces Jν,
where J(q, ν) = −JT (q, ν). In particular, Jν is equivalent to the
term depending on the curvature of the Ehresmann connection in
Bloch (2003) and Delgado, Gajbhiye, and Banavar (2015), or the
Jacobi–Lie bracket term in the structure matrix of the Hamiltonian
formulation (van der Schaft & Maschke, 1994).

2.2. The wheeled inverted pendulum (WIP)

Fig. 1 shows a simple scheme of the WIP. Let the configuration
space be Q̃ = R2

× S1
× S1

× S1
× S1 and define local coordinates

q = (x, y, θ, α, ϕr , ϕl) ∈ Q̃. The position of the WIP on the
horizontal plane is given by (x, y). The yawing and pitching angles
are each identified by θ and α. The coordinates ϕr and ϕl represent
the absolute rotations of the right and left wheel, respectively. The
equations

AT q̇ =


− s(θ) c(θ) 0 0 0 0
c(θ) s(θ) d 0 −r 0
c(θ) s(θ) −d 0 0 −r


q̇ = 0 (6)

represent the rolling-without-slipping constraints of the wheels.
The natural choice of admissible velocities ν = [v α̇ θ̇ ]

T , where v
is the forward velocity of the WIP, results in

q̇ = Sν =


c(θ) 0 0
s(θ) 0 0
0 0 1
0 1 0
1/r 0 d/r

1/r 0 −d/r


v

α̇

θ̇

 . (7)
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