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a b s t r a c t

This paper focuses on positive linear time-invariant systems with constant coefficients and specific
exogenous disturbance. The problem of finding a hyper-pyramid to bound the set of the states that are
reachable from the origin in the Euclidean space is addressed, subject to inputs whose (1, 1)-norm or
(∞, 1)-norm is bounded by a prescribed constant. The Lyapunov approach is applied and a bounding
hyper-pyramid is obtained by solving a set of inequalities. Iterative procedures (with an adjustable
parameter) for reducing the hyper-volume of the bounding hyper-pyramid for the reachable set are
proposed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When an admissible control signal of a linear dynamic system
is constrained in some way, the transfer of the system state from
the origin to an arbitrary terminal state is generally not possible.
Under some input constraints, the collection of all possible states
to which the system can be transferred from the origin is referred
to as the reachable set. The bounding of reachable states was first
considered for linear systems in the late 1960s in the context
of state estimation and it has later received a lot of attention
in parameter estimation (see Durieu, Walter, & Polyak, 2001 and
references therein). For linear systems, an ellipsoidal bound of
the reachable set is often used to contain all the reachable states
under zero initial conditions (Chen, Cheng, Zhong, Yang, & Kang,
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2015; Fridman & Shaked, 2003; Goncharova & Ovseevich, 2016;
Kang & Zhong, 2015; Kim, 2008; Nam, Pathirana, & Trinh, 2015;
Trinh, Nam, Pathirana, & Le, 2015; Zhang, Lam, & Xu, 2014; Zuo,
Wang, Chen, & Wang, 2014). The idea may also be used for solving
the peak-to-peakminimization problem (Abegor, Nagpal, & Poolla,
1996) or control problems with saturating actuators (Hu, Lin, &
Chen, 2002; Tarbouriech, Garcia, & Gomes da Silva, 2002). A linear
matrix inequality (LMI) solution to the reachable set bounding
problem was given in Boyd, El Ghaoui, Feron, and Balakrishnan
(1994) via the Lyapunov approach. However, to the best of the
authors’ knowledge, no related work has been devoted to the
reachable set bounding problem for positive systems. The novelty
of the present work is that we derive, for the first time, a hyper-
pyramidal bound on the reachable set of positive linear system
under various types of norm-bounded disturbances.

On the other hand, a quantitative treatment of the performance
and robustness of control systems requires the introduction
of appropriate signal and system norms, which measure the
magnitudes of the involved signals and system operators. As
discussed in Chen, Lam, Li, and Shu (2013a), some frequently
used performance measures such as the H∞ or L2–L∞ norms
are based on the L2 signal space, which are not very natural,
in some situations, to describe the features of practical systems
with positivity. On the other hand, the 1-norm of a vector-valued
signal could provide a useful description for positive systems
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which measures the size of the input and/or output signals by
summing the quantities of the non-negative components at a given
time (Chen, Lam, Li, & Shu, 2013b), and the L1-norm measures
the accumulation of all the components over time (Xiang &
Xiang, 2013), which are more appropriate, for instance, when they
represent the amount of material or the number of animals in a
species. Thus, the performance of positive systems can be well
evaluated based on the L1-gain (that is, the induced norm of L1
input and L1 output). Naturally, the linear Lyapunov function can
be applied as a valid candidate for stability analysis and controller
synthesis of positive systems. By using the linear Lyapunov
approach, stability analysis, L1-gain performance analysis and
control design have been discussed for positive continuous-time
linear systems (Briat, 2013; Haddad & Chellaboina, 2005; Wang
& Huang, 2013) and positive continuous-time switched systems
with delays (Haddad, Chellaboina, & Rajpurohit, 2004; Liu & Dang,
2011; Liu, Yu, &Wang, 2010). In this paper, two types of admissible
input signals are considered based on 1-norm and/or ∞-norm.
Under such specific classes of inputs, reachable set bounding and
controller synthesis in the Euclidean space with hyper-pyramids
are developed for positive linear systems.

The remaining parts of this article are organized as follows.
In Section 2, preliminaries are presented for positive continuous-
time systems. The input sets and the corresponding reachable sets
are defined and their properties are briefly discussed in Section 3.
Based on the characterizations of two classes of exogenous inputs,
sufficient conditions are derived to find a hyper-pyramid that
bounds the set of the states which are reachable from the origin.
The problem can be tackled by finding an admissible positive
vector subject to inequality constraints, and thus two iterative
schemes are presented to construct a bounding hyper-pyramid for
the system reachable set. The state-feedback synthesis problem is
considered in Section 4 such that the closed-loop system is positive
and its reachable set can be restrained within a certain hyper-
pyramid.

Notations:
N+, R Set of positive integers, set of real numbers
Rn Set of n-dimensional real vectors
Rm×n Set ofm × n real matrices
R̄n

+
, Rn

+
Nonnegative and positive orthants of Rn

ei Vector with 1 in ith position and 0 elsewhere
1, I Vector [1, 1, . . . , 1]T , identity matrix
λi(A) ith eigenvalue of matrix A
AT Transpose of A
∥x(t)∥1

n
i=1 |xi(t)|, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn

∥x(t)∥∞ maxni=1 |xi(t)|, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn

∥ω∥1,1


∞

0 ∥ω(s)∥1ds (called L1 norm in Chen et al., 2013b)
∥ω∥∞,1 ess supt≥0∥ω(t)∥1

Moreover, x ≥≥ 0 (x ≫ 0) denotes every component of x is
nonnegative (positive) (x is called nonnegative (positive)); A ≥≥

0 (A ≫ 0) denotes every entry ofmatrixA is nonnegative (positive)
(A is called nonnegative (positive)). A set P in a linear vector space
is convex if αx1 + (1− α)x2 ∈ P , for all x1, x2 ∈ P and α ∈ [0, 1].
Furthermore, P is a convex cone if it is convex and in addition
αx ∈ P for all x ∈ P and all α > 0. Vectors and matrices,
if their dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. Mathematical preliminaries

Definition 1 (Jönsson, 2001). LetV is a linear vector space, sk:V →

R. The constraint sk(y) ≥ 0 is said to be regular if there exists
y∗

∈ V such that sk(y∗) > 0, k = 1, 2, . . . ,N, N ∈ N+.

Lemma 1 (Jönsson, 2001). Let sk: Rm
→ R, sk(y) = gT

k y + hk, for
k = 0, 1, . . . ,N, be linear functionals defined in a linear vector space
Rm, where gk ∈ Rm, hk ∈ R, and N ∈ N+. If sk(y) is regular for
k = 1, 2, . . . ,N, the following two conditions are equivalent.
(S1) s0(y) ≥ 0, for all y ∈ Rm such that sk(y) ≥ 0, k = 1, 2, . . . ,N.
(S2) There exist scalars τk ≥ 0, k = 1, 2, . . . ,N such that s0(y) −N

k=1 τksk(y) ≥ 0, ∀y ∈ Rm.

Lemma 1 is a linear version of the classical quadratic S-
procedure (Fradkov, 1973; Yakubovich, 1971). It is a valid tool for
verifying the non-negativity of a linear function s0(y) under a finite
number of linear constraints sk(y) ≥ 0 (k = 1, 2, . . . ,N) since
condition (S2), in general, is much simpler to verify than condition
(S1).

Definition 2 (Farina & Rinaldi, 2000). A ∈ Rn×n is Metzler if its
off-diagonal elements are nonnegative, that is, A(i,j) ≥ 0, i, j =

1, 2, . . . , n, i ≠ j.

3. Reachable sets with exogenous inputs

Consider positive linear dynamic systems described by the
vector differential equation:

ẋ(t) = Ax(t) + Bωω(t) (1)

where x(t) ∈ R̄n
+
, ω(t) ∈ R̄m

+
are the system state and an exoge-

nous input signal, respectively, A ∈ Rn×n and Bω ∈ R̄n×m
+ are con-

stant system matrices, Bω is nonzero.
When the input ω(t) is taken into account, we try to provide a

fundamental characterization on the reachable set of system (1).
The problem of bounding the reachable set of a linear system
within an ellipsoid of Rn, which has center at the origin, arises in
many fields (Boyd et al., 1994). However, since the reachable states
of positive system (1) with ω(t) lie in the first orthant as x(t) ≥ 0,
the set containing the reachable set is a subset of R̄n

+
. To pose such

a problem precisely, we need to know how the subset is described
and what bounding criterion should be used (volume, semi-major
or semi-minor axis, for instance).

3.1. Estimation of reachable sets

A hyper-pyramid Cp of the form, for a given p ∈ Rn
+
:

Cp = {ξ ∈ R̄n
+

| pT ξ ≤ 1} (2)

will be considered in this paper for bounding the set of reachable
states of system (1) under zero initial conditions. Such a hyper-
pyramid is a subset of the positive orthant and it is convex (that is,
the segment connecting two points of the hyper-pyramid belongs
to the hyper-pyramid itself). It is clear that all the system states x(t)
are contained inCp if and only if pT x(t) ≤ 1. Next, characterization
on the hyper-pyramid Cp will be established for two possible
classes of the exogenous input signal ω(t) based on the L1-norm
and 1-norm.

Case (i): ω ∈ Ω1,1 ,

ω ∈ R̄m

+
| ∥ω∥1,1 ≤ 1


.

In this case, the disturbanceω(t) is considered to have L1-norm
no greater than unity.

Theorem 1. The reachable set of positive system (A, Bω) with zero
initial conditions and input ω ∈ Ω1,1 is bounded by the hyper-
pyramid in (2) with vector p ∈ Rn

+
if

ATp ≤≤ 0; BT
ωp ≤≤ 1. (3)

Proof. Construct a Lyapunov function V (x(t)) = pT x(t) with p ≫

0, then V (x(0)) = pT x(0) = 0. The derivative of V (x(t)) along the
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