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a b s t r a c t

The position and attitude tracking of a rigid body without velocity measurements is addressed. Dual
quaternions are used to describe the coupled rotational and translational motions of the rigid body,
yielding compact forms of the kinematics and dynamics suitable for control law synthesis. An output-
feedback pose (position and attitude) tracking controller is then designed by integrating techniques from
passivity and homogeneity. More precisely, a passivity-enabling auxiliary system is proposed to provide
necessary damping instead of velocity feedback and a homogeneous method is used to ensure finite-
time convergence. The proposed controller guarantees uniform almost global finite-time stability of the
closed-loop system and produces a well-defined vector field on the attitude configuration manifold, thus
avoiding the unwinding phenomenon. Moreover, it can be split to obtain velocity-free controllers with
finite-time convergence for the cases of translation-only or rotation-only control. Numerical examples
verify the effectiveness of the proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The position and attitude control of a rigid body in 3-D space
remains a relevant problem due to its broad applications to im-
portant mechanical systems such as spacecraft, unmanned aerial
vehicles, autonomous underwater vehicles, robotic manipulators,
etc. For missions such as space-based interferometry, rendezvous
and docking, cooperative aerial towing, etc. are problems which
fit more naturally into simultaneous rather than sequential posi-
tion and attitude control. Concurrent relative position and attitude
control with high precision is thus a key enabling technology. The
problem is challenging since the six-degree-of-freedom (six-DOF)
kinematics and dynamics of rigid-body motion are both nonlin-
ear and couple translation and rotation. If the position and attitude
controllers are designed separately but concatenated for pose con-
trol, the stability of the overall six-DOF systemmay not be directly
implied by the individually stable translation and rotation systems
and must be further addressed.
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State-feedback pose controllers have been developed by Filipe
and Tsiotras (2015), Gui and Vukovich (2016a), Kristiansen,
Nicklasson, and Gravdahl (2008), and Wang, Liang, Sun, Zhang,
and Liu (2012) assuming availability of (translational and angular)
velocity measurements from sensors. However, in reality velocity
information can be either unreliable or unavailable due to various
limitations. To eliminate the requirement for velocity feedback, a
high-pass filter was utilized byWong, Pan, and Kapila (2005)while
a low-pass filter was constructed by Filipe and Tsiotras (2013)
from a 3-D version for attitude-only control (Lizarralde & Wen,
1996). Both methods yielded asymptotic six-DOF tracking laws
without a velocity observer. Unlike asymptotic stability, finite-
time stability (FTS; Bhat & Bernstein, 2000a) implies convergence
in a finite time, thus faster convergence rates and better robustness
to disturbances. Note that the concept of FTS here is different from
that of Amato, Ariola, and Cosentino (2006), which only focuses on
the boundedness of states within a finite time interval.

To design finite-time output-feedback laws, a typical approach
is to combine finite-time state-feedback laws with finite-time
observers (Hong, Yang, Bushnell, & Wang, 2000) or differentiators
(Levant, 2003), while avoiding finite-time escape. It is, however,
fairly difficult to construct global finite-time observers for general
nonlinear systems and most existing results are for certain single-
input-single-output systems (Hong, 2002; Hong, Huang, & Xu,
2001; Li & Qian, 2006; Orlov, Aoustin, & Chevallereau, 2011).
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Recently, finite-time output-feedback controllers for attitude
control were proposed by Du and Li (2013), Zou (2014), and
Hu, Jiang, and Friswell (2014), all based on velocity observers.
These designs require feedback domination of the entire system
nonlinearity, including the Coriolis forces, and rely on an
Euler–Lagrange formulation of the attitude dynamics in local
coordinates. In addition, the resulting controllers yield semi-global
FTS, which intrinsically relies on high-gain injection to enlarge
the domain of attraction. These approaches can be extended to
translation control but will lead to drawbacks similar to attitude-
only controllers. A finite-time observer was developed by Sanyal,
Izadi, and Bohn (2014) to estimate the states for rigid-body
motion, but it still required velocity measurements. An observer-
free dynamic output-feedback law was proposed by Su and Zheng
(2015) for a double integrator systembut it only ensures local FTS if
homogeneous perturbations are present, similarly toHong, Xu, and
Huang (2002). These studies are mainly restricted to stabilization
of some special time-invariant systems.

The above methods, however, cannot be directly applied
to develop global finite-time output-feedback tracking laws for
a rigid body due to the nonlinear, coupled, nonautonomous
system dynamics. In addition, the attitude configuration SO(3)
is a compact manifold without boundary which does not allow
continuous global stabilization laws (Bhat & Bernstein, 2000b). If
inappropriately designed, some quaternion-based controllers can
induce the undesirable unwinding problem (Schlanbusch, Loria, &
Nicklasson, 2012).

This paper approaches simultaneous position and attitude
tracking of a rigid body with neither translational nor angular ve-
locity feedback. The six-DOF dynamics are formulated via dual
quaternions, an extension of quaternions. They provide a compact,
efficient, global description of rigid-body motion with only eight
numbers, and facilitate the unified synthesis of pose control laws.
The control design features two steps, namely, injecting damping
via a dual-quaternion filter, which can be viewed as an extension of
a previous quaternion filter (Abdessameud & Tayebi, 2009; Tayebi,
2008), and enabling a negative homogeneous degree by a properly
constructed nonsmooth feedback. Both design procedures take ad-
vantage of the nonlinearity of system dynamics. As shown by rig-
orous analysis, the resultant output-feedback controller not only
ensures uniform almost global FTS (UAGFTS) of the closed-loop
systems but also avoids the unwinding problem. It can also be split
to obtain finite-time output-feedback control laws for translation-
only or rotation-only control. In particular, the rotational control
law yields a priori bounded control torques. Illustrative examples
show the effectiveness of the proposed method.

2. Preliminaries and problem formulation

2.1. Notations, quaternions, and dual quaternions

Throughout this paper, In denotes the n × n identity matrix
and In = {1, . . . , n}. For λ > 0 and a weight vector w =

[w1, . . . , wn]
T

∈ Rn with wi > 0, i ∈ In, a dilation operator
∆w

λ is defined by ∆w
λ x = [λw1x1, . . . , λwnxn]T for x ∈ Rn. To

deal with time-dependent functions and systems, ∆w
λ is extended

as ∆w
λ (x, t) = (∆w

λ x, t) (Pomet & Samson, 1994). Given x ∈ R
and x ∈ Rn, denote by |x| the absolute value, ∥x∥ the Euclidean
norm, and sgnα(x) = [sgnα(x1), . . . , sgnα(xn)]T , where α ≥ 0,
sgnα(x) = sgn(x) |x|α and sgn(·) is the standard sign function.
Note that d |x|1+α /dt = (1 + α)sgnα(x)ẋ and d ∥x∥1+α /dt =

(1 + α) ∥x∥α−1 xT ẋ. In addition, y = O(x) means |y| ≤ c |x| for
sufficiently small |x| and some constant c > 0. For ∀x, y ∈ R3, x×

is the skew-symmetric matrix satisfying x×y = x × y, where × is
the cross product on R3.

Let Q = {q = (q0, q̄) : q0 ∈ R, q̄ ∈ R3
} denote the set of

quaternions. Let ε represent a dual unit satisfying ε2
= 0but ε ≠ 0.

A dual number is then defined as

â = ar + εad, ar , ad ∈ R, (1)

where ar and ad are called the real anddual parts, respectively. Dual
vectors and dual quaternions can be viewed as two generalizations
of dual numbers. Dual numbers of the form â = ar +εad are called
dual vectors if ar , ad ∈ R3, and dual quaternions if ar , ad ∈ Q.
The sets of dual quaternions and dual vectors are denoted by DQ
and DQV , respectively. Let 1 = (1, 0̄) and 0 = (0, 0̄) with 0̄ =

[0, 0, 0]T denote the identity and zero elements on Q, respectively.
Following this, define 1̂ = 1+ε0 and 0̂ = 0+ε0 to be the identity
and zero element on DQ and ˆ̄0 = 0̄ + ε0̄ to be the zero element
on DQV . As a complement to the dual unit, the operator d/dε is
introduced such that dâ/dε = ad for ∀â ∈ DQ and when applied
twice d2â/dε2

= 0. In contrast, εâ = εar and ε(εâ) = 0.
The multiplication on Q and DQ is defined by

q ⊗ q′
= (q0q′

0 − q̄ · q̄′, q0q̄′
+ q′

0q̄ + q̄ × q̄′), q, q′
∈ Q,

â ⊗ b̂ = ar ⊗ br + ε(ad ⊗ br + ar ⊗ bd), â, b̂ ∈ DQ.

Note that ⊗ is associative and distributive but not commutative.
The conjugates of a ∈ Q and â ∈ DQ are given by a∗

= (a0, −ā)
and â∗

= a∗
r + εa∗

d . The conjugation operation satisfies (a⊗ b)∗ =

b∗
⊗ a∗ and (â ⊗ b̂)∗ = b̂∗

⊗ â∗ for ∀a, b ∈ Q and ∀â, b̂ ∈ DQ. In
addition, the set of unit quaternions and unit dual quaternions are
defined by QU = {q ∈ Q : q∗

⊗ q = 1} and DQU = {q̂ ∈ DQ :

q̂∗
⊗ q̂ = 1̂}. The swap of â ∈ DQ is defined by âs

= ad + εar . The
following operations are also needed:

ĉ ⊙ â = (cr + εcd) ⊙ (ar + εad) = crar + εcdad, â ∈ DQ,

â × b̂ = ar × br + ε(ad × br + ar × bd), â, b̂ ∈ DQV ,

â ◦ b̂ = ar · br + ad · bd, â, b̂ ∈ DQV ,

where ⊙ denotes the product of a dual number with a dual
quaternion while ◦ is called the dual quaternion circle product.
In addition, given â ∈ DQ and λ ∈ R, let λâ = λar + ελad.
Given A ∈ R3×3 and â ∈ DQV , let Aâ = Aar + εAad. Note that
3-D (dual) vectors can, in fact, be viewed as (dual) quaternions
with vanishing scalar parts, which are practically treated as zero
when operating with (dual) quaternions. For more concepts and
properties about dual numbers and dual quaternions the reader is
referred to Filipe and Tsiotras (2015), Gui and Vukovich (2016a)
and references therein.

2.2. Definitions and lemmas

Definition 1 (Pomet and Samson (1994)). Consider a time-varying
system

ẋ = f (x, t), x ∈ Rn, (2)

where f (x, t) = [f1(x, t), . . . , fn(x, t)]T ∈ Rn is continuous with
respect to x. The vector field f (x, t) is said to be homogeneous
of degree k ∈ R with respect to a dilation ∆w

λ if fi(∆w
λ (x, t)) =

λwi+kfi(x, t) for ∀i ∈ In, ∀x ∈ Rn, and ∀λ > 0.

Definition 2 (Moulay and Perruquetti (2008)). Consider system (2)
with f (0n×1, t) = 0n×1 and denote by U a neighborhood of
x = 0n×1. Then, the origin is uniformly locally FTS (ULFTS) if it
is (1) uniformly Lyapunov stable in U and (2) uniformly finite-time
convergent inU , i.e., there exists a function T : U → R≥0 such that
for any (x0, t0) ∈ U ×R≥0, the solution satisfies x(t, x0, t0) ∈ U for
t ∈ [0, T (x0)) and x(t, x0, t0) = 0n×1 for t ≥ T (x0)+ t0. If U = Rn,
the origin is uniformly globally FTS (UGFTS).
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