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a b s t r a c t

In this paper, a distributed model predictive control scheme is proposed for linear, time-invariant
dynamically coupled systems. Uniquely, controllers optimize state and input constraint sets, and
exchange information about these – rather than planned state and control trajectories – in order to
coordinate actions and reduce the effects of the mutual disturbances induced via dynamic coupling.
Mutual disturbance rejection is by means of the tube-based model predictive control approach, with
tubes optimized and terminal sets reconfigured on-line in response to the changing disturbance sets.
Feasibility and exponential stability are guaranteed under provided sufficient conditions on non-increase
of the constraint set parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) has become one of the most
popular advanced control techniques (Maciejowski, 2002), with
many industrial applications (Qin & Badgwell, 2003) and mature
theoretical foundations (Mayne, 2014). The key to this success
is the inherent flexibility of MPC, which allows for complex
issues such as constraints or delays to be dealt with explicitly,
when otherwise the off-line determination of a control law
would be prohibitively difficult. Despite this, the control of large-
scale, interconnected or networked systems – such as chemical
plants (Stewart, Venkat, Rawlings, Wright, & Pannocchia, 2010),
electricity networks (McNamara, Negenborn, De Schutter, &
Lightbody, 2013) or teams of vehicles (Trodden & Richards, 2013) –
still presents significant difficulties to MPC (Negenborn &Maestre,
2014). For example, the organizational structure of the system –
and its information flows – may not be conducive to a centralized
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control approach. Moreover, even if it is, the MPC optimization
problem for the whole systemmay be too large to solve within the
required time.

For this reason, significant attention has been given in the past
decade to distributed forms of model predictive control (DMPC)
(Christofides, Scattolini, Muñoz del la Peña, & Liu, 2013; Maestre &
Negenborn, 2014; Scattolini, 2009). In DMPC, the optimal control
problem is decomposed into several smaller sub-problems that
are distributed to a set of local controllers or control agents. Each
controller or agent is responsible for controlling a subsystem
composed of a subset of the system states and control inputs.
In order to achieve system-wide stability and satisfactory closed-
loop performance, the agents exchange information so that they
can coordinate their decision making. Many schemes have been
proposed to date, and differ according to the particularities of
the scenarios in which they are applied: for example, the way in
which the system is decomposed, the source of coupling, or the
limits in the communication or computation capacity (Maestre &
Negenborn, 2014).

One of the fundamental, and most researched, problems in
DMPC is control of linear time-invariant systems coupled via
dynamics. The problem is non-trivial since the states and inputs of
one subsystem affect others too, leading to mutual disturbances;
hence, coordination is usually needed to ensure satisfactory
performance of the overall system. Many approaches have been
proposed (Christofides et al., 2013; Maestre & Negenborn, 2014;
Scattolini, 2009), and almost all involve the sharing of planned
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control sequences or state trajectories between controllers.
Recently, attention has focused on tube MPC (Mayne, Seron, &
Raković, 2005) as a means for rejecting the mutual disturbances
arising from these subsystem interactions. The first tube-based
DMPC approaches (Richards & How, 2007; Trodden & Richards,
2010) were developed for dynamically decoupled, uncertain
subsystems with coupled constraints; each controller uses the
tube technique to reject bounded local disturbances. The direct
application of that approach to systems with dynamic coupling
will, however, result in excessive conservativeness, since the
bounded disturbance set for each subsystem must account for all
possible state and input interactions (and not just, for example,
deviations of neighbours’ states and inputs from planned, or
reference, trajectories). To circumvent this, improved proposals
have been made: in Farina and Scattolini (2012), tube-based
controllers share reference trajectories and maintain true states
and inputs in bounded neighbourhoods of these. In Riverso and
Ferrari-Trecate (2012), the tube MPC concept is applied twice
by each controller: once to maintain a planned perturbed state
trajectory around a planned nominal trajectory, then again to
maintain the true, perturbed state trajectory around the planned
one.

Though providing a natural route to guaranteed feasibility
and stability, a key drawback of the tube-based approaches is
conservatism because, ultimately, themutual disturbance induced
by state and/or input coupling has to be bounded. If the state and
input constraint sets are large, then this naturally leads to large
disturbance sets and, hence,more tightly constrained local optimal
control problems, even for (Farina & Scattolini, 2012; Riverso &
Ferrari-Trecate, 2012). In this paper, we attempt to overcome this
drawback by exploiting the fact that, often, subsystems do not
use all of their state and input constraint sets and, hence, the
mutual disturbance sets can be reduced by considering this. The
main technical development is that local controllers, when solving
their optimal control problems, optimize not only the control
sequence but also the sizes of the state and input constraint sets.
In other words, subsystem state and input sets are contracted
to the smallest sizes sufficient to meet control objectives, which
in turn leads to smaller disturbance sets. Controllers then share
information about these state and input sets – rather than planned
state and control trajectories – in order that they may compute
a smaller estimate of the set of possible disturbances. Finally,
to reject these bounded disturbances, the tube MPC technique
(Mayne et al., 2005) is applied. However, in this paper, the
disturbance invariant sets required for tube MPC are optimized
online to take into account the changing sizes of the disturbance
sets.

The sharing of sets of states and inputs has similarities with
the ‘‘contract-based’’ DMPC approach (Lucia, Kögel, & Findeisen,
2015), wherein subsystems share ‘‘contract sets’’ about their
future behaviour, based on reachable sets computed at each time
step given current knowledge of uncertainty. Our work differs
in several details, including (i) the use of decoupled positively
invariant sets as terminal conditions, which are less complex
objects, and easier to compute, than the inter-dependent robust
invariant sets required in Lucia et al. (2015); (ii) in our approach,
the complexity of each MPC problem is similar to conventional
MPC, and the shared information between subsystems is of
parameterized versions of the state and input constraint sets,
which are readily available, while in Lucia et al. (2015) sequences
of reachable sets are required to be computed within each MPC
optimization; (iii) we offer a comprehensive way to compute the
required disturbance sets and robust invariant sets that arise from
the shared state and input sets, via a single linear program (LP).

This latter aspect, in particular, of the proposed approach also
leads to similarities with the ‘‘plug-and-play’’ approach to decen-
tralized MPC (Riverso, Farina, & Ferrari-Trecate, 2014). In that ap-
proach, subsystem controllers re-compute disturbance invariant

sets on-line in order to account for changes to disturbance sets.
However, there are two key differences: firstly, in Riverso et al.
(2014), only the effect of adding or removing subsystems from
the overall system is considered when disturbance sets are re-
computed, while in this paper we re-compute disturbance sets to
account for how much of the constraint sets planned state and in-
put trajectories are using. Secondly, in Riverso et al. (2014) the
notion of robust control invariant (RCI) sets (Raković, Kerrigan,
Mayne, & Kouramas, 2007) is used: each subsystem controller
solves an LP to compute an RCI set and an associated feedback con-
trol lawwhich are thenused as, respectively, the tube cross-section
set and tube controller. In this paper, however, we retain the orig-
inal notion in tube MPC of robust positively invariant (RPI) sets:
each controller retains the same (linear) tube controller through-
out, but solves an LP to re-compute its RPI tube cross-section set
to take into account changes to the mutual disturbance set. This is
achieved by exploiting a recently developed method for comput-
ing, via a single LP, an RPI set characterized by a-priori known in-
equalities (Trodden, in press); we make a further extension to this
approach to include the computation of the disturbance set (which
depends on neighbouring subsystems’ states and inputs) implicitly
in the RPI set optimization, removing the need to compute the dis-
turbance set explicitly beforehand.

A preliminary version of this paper appeared in Trodden,
Baldivieso, and Maestre (2016), presenting the initial idea and
results. In the current paper, the following additional contributions
are made:

• A reconfigurable, parametric terminal set is designed, replacing
the simple choice of the origin used in Trodden et al. (2016).
This set, which enlarges the region of attraction and improves
closed-loop performance, adjusts automatically (on-line) to
account for the changes in size and shape of the constraint sets.

• The ancillary on-line operations to re-compute disturbance
invariant sets are refined and improved: RPI sets are computed
directly from shared information, via a single LP, removing the
need to explicitly construct disturbance sets via Minkowski
summations as in Trodden et al. (2016). Furthermore, the
algorithm is generalized to permit re-configuration of sets at
a lower rate than the main sampling rate, in order to reduce
the on-line computational burden. Further simplifications are
described and discussed, including a scalar implementation of
the algorithm that requires minimal on-line computation in
addition to the MPC problem.

The paper is organized as follows. Preliminary details and
the problem statement are given in Section 2. In Section 3, the
distributed optimal control problem, including the parametric
design of the terminal set, is presented. The distributed control
algorithm is defined in Section 4, together with details and
explanations of on-line computations. Theoretical guarantees of
recursive feasibility and stability, under the sufficient condition of
non-increase of the state and input constraint set parameters, are
established in Section 5. In Section 6, simulations of the algorithm
are presented for an example system, before concluding remarks
are made in Section 7.

Notation: The sets of non-negative and positive reals are de-
noted, respectively, R0+ and R+. The notation [a, b]n means the
n-dimensional product set [a, b] × [a, b] × · · · × [a, b], where
a ∈ R and b ∈ R. For a, b ∈ Rn, a ≤ b applies element by ele-
ment. The ball of radius δ isB(δ); the dimension will be clear from
the context. The distance of a point x ∈ Rn from a set X ⊂ Rn is
|x|X , infy∈X |x − y|. AX denotes the image of a set X ⊂ Rn under
the linear mapping A : Rn

→ Rp, and is given by {Ax : x ∈ X}. For
X, Y ⊂ Rn, theMinkowski sum isX⊕Y , {x+y : x ∈ X, y ∈ Y }; for
Y ⊂ X , theMinkowski difference isX⊖Y , {x ∈ Rn

: Y⊕{x} ⊂ X}.
For X ⊂ Rn and a ∈ Rn, X ⊕ ameans X ⊕{a}. The support function
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