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a b s t r a c t

An output-feedback approach tomodel predictive control that combines state estimation and control into
a single min–max optimization is introduced for discrete-time nonlinear systems. Specifically, a criterion
that involves finite forward and backward horizons is minimized with respect to control input variables
and ismaximizedwith respect to the unknown initial state aswell as disturbance andmeasurement noise
variables. Under appropriate assumptions that encode controllability and observability, we show that the
state of the closed-loop remains bounded and that a bound on tracking error can be found for trajectory-
tracking problems. We also introduce a primal–dual interior-point method that can be used to efficiently
solve the min–max optimization problem and show in simulation examples that the method succeeds
even for severely nonlinear and non-convex problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Online optimizationhas becomeaubiquitous approach for solv-
ing control and estimation problems in both academia and indus-
try. This is largely due to the ability to explicitly accommodate
hard state and input constraints in online optimization techniques.
Because of this, an especially popular online optimization con-
trol technique called model predictive control (MPC) is used in
numerous industrial applications (Qin& Badgwell, 2003), and, con-
sequently, much effort has been devoted to developing a stabil-
ity theory for MPC (see e.g. Camacho & Bordons, 2004; Grüne &
Pannek, 2011; Morari & H Lee, 1999; Rawlings, 2000; Rawlings &
Mayne, 2009). An overview of recent developments can be found
in Mayne (2014).

MPC involves the solution of an open-loop optimal control
problem at each sampling time. Each of these optimizations re-
sults in a sequence of future optimal control actions and a sequence
of corresponding future states. The first control action in the se-
quence is applied to the plant, and then the optimization is solved

✩ The material in this paper was partially presented at the 53rd IEEE Conference
on Decision and Control, December 15–17, 2014, Los Angeles, CA, USA. This paper
was recommended for publication in revised form by Associate Editor Riccardo
Scattolini under the direction of Editor Ian R. Petersen.

E-mail addresses: dacopp@engr.ucsb.edu (D.A. Copp), hespanha@ece.ucsb.edu
(J.P. Hespanha).

again at the next sampling time. MPC has historically been popu-
lar for problems in which the plant dynamics are sufficiently slow
so that the optimization can be solved between consecutive sam-
pling times. However, as available computational power increases
and optimization algorithms improve in terms of speed, MPC can
be applied to broader application areas.

MPC is often formulated assuming that the full state of the
process to be controlled can be measured. However, this is not
possible in many practical cases, so the use of independent
algorithms for state-estimation, including observers, filters, and
moving horizon estimation (MHE), as discussed, i.e., in Rawlings
and Bakshi (2006), is required. Of thesemethods, MHE is especially
attractive for use with MPC because it can be formulated as
a similar online optimization problem that explicitly handles
constraints. Solving the MHE problem produces a state estimate
that is compatible with a set of past measurements that recedes as
the current time advances. This estimate is optimal in the sense
that it maximizes a criterion that captures the likelihood of the
measurements. By receding the set of measurements considered
in the MHE optimization, one maintains a constant computational
cost for the optimization.

In this paper, we propose an approach to combine MPC and
MHE into a single optimization that is solved online to construct
an output-feedback controller. To account for the uncertainty that
results from unmeasured disturbances and measurement noise,
we replace the minimization that is used in classical MPC by a
min–max optimization. In this case, the minimization is carried
out with respect to future control actions, and the maximization
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is taken with respect to the variables that cannot be measured,
namely the system’s initial state, the unmeasured disturbances,
and the outputmeasurement noise. The criterion for thismin–max
optimization combines a term that captures the control objective
and a term that captures the likelihood of the uncertain variables,
resulting in essentially the summation of an MPC criterion with an
MHE criterion.

The main technical contribution of this paper addresses the
stability of the proposed combined MPC/MHE approach. We
show that the proposed output-feedback controller results in
closed-loop trajectories along which the state of the process
remains bounded, and, for tracking problems, our results provide
explicit bounds on the tracking error. These results rely on three
key assumptions: The first assumption requires the existence
of saddle-point equilibria for the min–max optimization, or
equivalently, that the min and max commute. For linear systems
and quadratic costs, this assumption is satisfied if the system
is observable and weights in the cost function are chosen
appropriately (Copp & Hespanha, 2016b). The second assumption
requires the optimization criterion to include a terminal cost
that is a control ISS-Lyapunov function with respect to the
disturbance input. This type of assumption is common in classical
state-feedback robust MPC. The final observability assumption
essentially requires that the backwards horizon is sufficiently large
so that enough information about the initial state is obtained in
order to find past estimates that are compatiblewith the dynamics.

A second contribution of this paper is a new primal–dual
interior-point algorithm that can be used to compute the saddle-
point equilibrium that needs to be solved for online at each
sampling time. This algorithm relies on the use of Newton’s
method to solve a relaxed version of the Karush–Kuhn–Tucker
(KKT) conditions associated with the coupled optimizations that
define the saddle-point equilibrium. As in classical primal–dual
methods, we replace the equality to zero of the complementary
slackness conditions by equality to a positive constant µ that we
force to converge to zero as the Newton iterations progress. In
practice, the algorithm will stop with a positive value for µ, but
we show that this still leads to an ϵ-saddle-point, where ϵ can
be explicitly computed and made arbitrarily small through the
selection of an appropriate stopping criterion.

1.1. Related work

State-feedback MPC is a mature field with numerous contribu-
tions. Particularly relevant to the results in this paper is the work
on the so-called robust or min–max MPC, which considers model
uncertainty, input disturbances, and noise (Bemporad & Morari,
1999; Campo & Morari, 1987; Lee & Yu, 1997; Magni, De Nicolao,
Scattolini, & Allgöwer, 2003). Min–maxMPC for constrained linear
systems was considered by Bemporad, Borrelli, and Morari (2003)
and Scokaert andMayne (1998), and a game theoretic approach for
robust constrained nonlinear MPC was proposed by Chen, Scherer,
and Allgöwer (1997). More recent studies of input-to-state sta-
bility of min–max MPC can be found in Lazar, Muñoz de la Peña,
Heemels, and Alamo (2008), Limon, Alamo, Raimondo, Muñoz de
la Peña, Bravo, Ferramosca, and Camacho (2009) and Raimondo,
Limon, Lazar, Magni, and Camacho (2009). These works focused on
state-feedback MPC and did not consider robustness with respect
to errors in state estimation. A novelty of the work presented in
this paper is the reliance on saddle-point equilibria, rather than a
simple min–max optimal, which we found instrumental in estab-
lishing our stability results.

Fewer results are available for output-feedback MPC. An
overview of nonlinear output-feedback MPC is given by Findeisen,
Imsland, Allgöwer, and Foss (2003) and the references therein.

Many of these output-feedback approaches involve designing sep-
arate state estimator and MPC schemes. Several of the observers,
estimators, and filters that have been proposed for use with non-
linear output-feedback MPC include an extended Kalman filter
(Huang, Patwardhan, & Biegler, 2009), optimization based mov-
ing horizon observers (Michalska & Mayne, 1995), high gain ob-
servers (Imsland, Findeisen, Bullinger, Allgöwer, & Foss, 2003),
extended observers (Roset, Lazar, Nijmeijer, & Heemels, 2006), and
robust MHE (Zhang & Liu, 2013). In contrast to solving the estima-
tion and control problems separately, the formulation of our com-
bined MPC/MHE approach as a single optimization facilitates the
stability analysis of the closed-loop without the need for a separa-
tion principle for nonlinear systems.

Results on robust output-feedback MPC for constrained, lin-
ear, discrete-time systems with bounded disturbances and mea-
surement noise can be found in Mayne, Raković, Findeisen, and
Allgöwer (2006, 2009), where a stable Luenberger observer is
employed for state estimation and robustly stabilizing tube-based
MPC is performed to control the state of the observer. Alterna-
tively, in Sui, Feng, and Hovd (2008), MHE is employed for state
estimation and is combined with a similar tube-based MPC ap-
proach. These approaches first solve the estimation problem and
show convergence of the state estimate to a bounded set and then
take the uncertainty of the state estimate into account when solv-
ing the robust MPC problem. The work of Löfberg (2002) combines
an estimation scheme, which provides a guaranteed ellipsoidal er-
ror bound on the state estimate, with a min–max MPC scheme
for estimation and control of linear systems with bounded distur-
bances and measurement noise.

During the same time that many important results on MPC
were developed, parallel work began on MHE. The work of All-
göwer, Badgwell, Qin, Rawlings, and Wright (1999) gives a tuto-
rial overview and background of both MPC and MHE as well as
methods that can be used to solve these optimization problems.
Useful overviews of constrained linear and nonlinear MHE can be
found in Rao, Rawlings, and Lee (2001); Rao, Rawlings, and Mayne
(2003)where,with appropriate assumptions regarding observabil-
ity, continuity, and an approximate arrival cost, the authors prove
asymptotic stability as well as bounded stability in the presence of
bounded noise.

More recent results regarding MHE for discrete-time nonlinear
systems are given by Alessandri, Baglietto, and Battistelli (2008),
in which the authors minimize a quadratic cost that includes
the standard output error term as well as a term penalizing
the distance of the current estimated state from its prediction.
The authors prove boundedness of the estimation error, when
considering bounded disturbances and measurement noise, and
convergence of the state estimate to the true value in the noiseless
case. Even more recent work on robust MHE for nonlinear systems
appeared in Liu (2013), where first a high-gain observer is used to
bound the estimation error, and then that bound is used to design a
constraint for incorporation in an MHE problem. This formulation
seems to reduce the sensitivity of the performance of MHE to the
accuracy of the approximate arrival cost, and boundedness of the
state estimate is proven when the noise is bounded.

The optimization algorithm proposed here is heavily inspired
by primal–dual interior-point methods (Wright, 1997b) that have
been very successful in solving convex optimizations (Boyd &
Vandenberghe, 2004). The use of interior-point algorithms to solve
MPC problems is discussed by Rao, Wright, and Rawlings (1998),
and additional early work on efficient numerical methods for
solving MPC problems can be found in Biegler (2000), Biegler and
Rawlings (1991) andWright (1997a). An overviewof the numerical
methods available for solving the optimization problems that
arise in nonlinear MPC and MHE is given by Diehl, Ferreau, and
Haverbeke (2009), whereas the more recent work (Wang & Boyd,
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