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a b s t r a c t

This paper considers the distributed sampled-data control problem of a group ofmobile robots connected
via distance-induced proximity networks. A dwell time is assumed in order to avoid chattering in
the neighbor relations that may be caused by abrupt changes of positions when updating information
from neighbors. Distributed sampled-data control laws are designed based on nearest neighbor rules,
which in conjunction with continuous-time dynamics results in hybrid closed-loop systems. For uniform
and independent initial states, a sufficient condition is provided to guarantee synchronization for the
system without leaders. In order to steer all robots to move with the desired orientation and speed,
we then introduce a number of leaders into the system, and quantitatively establish the proportion of
leaders needed to track either constant or time-varying signals. All these conditions depend only on the
neighborhood radius, the maximum initial moving speed and the dwell time, without assuming a prior
properties of the neighbor graphs as are used in most of the existing literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative control of multi-robot/agent systems (MRS/MAS)
has generated wide interest in researchers in control and robotics
communities. Compared with a single robot, multiple robots can
cooperatively accomplish complicated tasks with the advantages
of high efficiency and robustness to the link failures. Over the
last decade, MRS have wide applications in implementing a large
number of tasks ranging from coverage, deployment, rescue, to
surveillance and reconnaissance. Among these tasks, a basic one is
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to reach synchronization, i.e., all robots reach the same state,which
actually has close connection with many important engineering
applications, such as rendezvous problem (Cortés, Martínez, &
Bullo, 2006; Smith, Broucke, & Francis, 2007), agreement problem
(Pease, Shostak, & Lamport, 1980), distributed optimization (Lobel
& Ozdagar, 2011) and formation control (Cao, Yu, & Anderson,
2011).

Recently, the synchronization problem of MAS has been ex-
tensively studied in the literature where the neighbor relations
are typically modeled as graphs or networks. For example, Jad-
babaie, Lin, and Morse (2003) and Ren and Beard (2005), respec-
tively, studied the first-order discrete-time MAS with undirected
graphs and directed graphs. Olfati-Saber and Murray (2004) stud-
ied the MAS with first-order continuous-time dynamics. The non-
holonomic unicycle MRS are investigated by Moshtagh, Michael,
Jadbabaie, and Daniilidis (2009) andMontijano, Thunberg, Hu, and
Sagüès (2013). MAS with nonlinear dynamics, time delays, and
measurement noises are also considered (Moreau, 2005; Shi & Jo-
hansson, 2013; Wang & Liu, 2009; Xiao & Wang, 2008). In almost
all existing results, the neighbor graphs are required to satisfy cer-
tain connectivity assumptions for synchronization. How to verify
or guarantee such conditions has been a challenging issue. In order
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to maintain connectivity of dynamical communication graphs, po-
tential function methods are commonly used when designing the
distributed control laws (Ajorlou & Aghdam, 2013; Dimarogonas &
Kyriakopoulos, 2007; Ji & Egerstedt, 2007).

For a real world MRS, it is more practical that the dynamics of
the system aremodeled in a continuous-timemanner whereas the
control laws are designed based on the sampled-data information.
The sampled-data technique is of interest in many situations, such
as unreliable information channels, limited bandwidth, transport
delay. The synchronization ofMASwith sampled-data control laws
has been studied (Liu, Li, Xie, fu & Zhang, 2013; Xia & Chen,
2012), where the neighbor graphs are also required to satisfy
certain connectivity assumptions. It is clear that the potential
function techniques are not applicable for the analysis ofMASwith
continuous-time dynamics and sampled-data control, because
connectivity of the networks might be lost between sampling
instants. How to analyze the synchronization behavior of such
kind of systems becomes more challenging. In this paper, we
first present a distributed sampled-data algorithm for a group of
nonholonomic unicycle robots with continuous-time dynamics,
and provide a comprehensive analysis for the synchronization of
the closed-loophybrid system. In ourmodel, each robot has limited
sensing and communication range, and the neighbor relations
are described by proximity networks. A dwell time is assumed
when updating information from neighbors, implying that the
control signals are kept constant between the sampled instants
and only updated at discrete-time instants. With such sampled-
data information, our design of distributed control laws based on
nearest-neighbor rules will clearly result in a hybrid closed-loop
system, which is different from the case of discrete-time MAS
studied by Liu and Guo (2009) and Tang and Guo (2007), and is
also different from the previous results given by Liu, Wang and Hu
(2014) where the control law for the rotational speed is designed
using the continuous-time information.

For a multi-agent system, we may design a distributed
algorithm to guarantee synchronization of the system, but the
synchronization state is inherently determined by the initial states
and model parameters. In many practical applications, we expect
that the system achieves a desired synchronization state and we
can treat that state as a reference signal. The agents that have
access to the reference signal are referred to as leaders, and they
can help steer the MRS to the desired state. Although a large
number of theoretical analysis and results for the leader–follower
model have been provided, further theoretical investigation is still
needed due to some limitations in the existing theory: (i) similar
to the leaderless case, the neighbor graphs are required to
be connected or contain spanning trees to guarantee that the
followers track the reference signal (Jadbabaie et al., 2003; Tove,
Dimarogonas, Egerstedt & Hu, 2010), but there are few results to
address how to verify such conditions. (ii) in order to guide all
agents to accomplish complicated tasks, such as tracking time-
varying signals and the containment control problem, a number
of (not only one) leaders need to be introduced into the system
(Cao, Ren & Egerstedt, 2012; Couzin, Krause, Franks & Levy,
2005; Dimarogonas, Tsiotras, & Kyriakopoulos, 2009). However,
quantitative theoretical results for the number of leaders needed
are still lacking. Hence, this paper considers also a multi-unicycle
system with multiple leaders and presents some new quantitative
results. The sampled-data information is used to design the
control laws for the followers and leaders. We analyze the MRS
with heterogeneous agents where the leaders and followers have
different dynamics since the reference signal is only obtained by
the leaders, and quantitatively provide the proportion of leaders
needed to track the reference signals.

The main contributions of this paper are summarized into
the following three aspects. (i) For the leaderless case, we

establish a sufficient condition, imposed on the neighborhood
radius, the dwell time and the maximum moving speed, to guar-
antee synchronization of the nonholonomic unicycles, which over-
comes the difficulty of requiring a prior connectivity assumption
on neighbor graphs used in most of the existing results. (ii) For
the leader–follower model, we provide the proportion of leaders
needed to guide all robots to track a reference signal which can
be constant or slowly time-varying. These quantitative results il-
lustrate that adding leaders is a feasible approach to guide MRS
to accomplish some complicated tasks. (iii) For both the leaderless
case and leader-following case, we provide comprehensive anal-
ysis for nonlinear hybrid closed-loop systems. Different from the
work of Liu and Guo (2009) and Tang and Guo (2007), we need to
estimate the synchronization rate of the continuous-time variables
(i.e., speed and orientation). Here the speed and orientation are de-
termined by the corresponding values at sampling time instants
and they are updated according to the states of relevant neighbors,
and the neighbors are defined via the positions of all robots. Hence,
the positions, orientations andmoving speeds of all robots are cou-
pled. We deal with the coupled relationships by combining the dy-
namical trajectories of the robots at discrete-time instantswith the
analysis of continuous-time dynamics in sampling intervals.

The rest of this paper is organized as follows. In Section 2,
we present the problem formulation for a leaderless model and
provide the main result for synchronization. In Section 3, we first
investigate the leader-following problem where the leaders have
constant reference signal, and quantitatively provide the ratio of
the number of leaders to the number of followers needed to track
the signal. We then extend our result to the dynamical tracking
where the leaders have time-varying reference signal, and present
some simulations to illustrate our theoretical results. Concluding
remarks are presented in Section 4.

For a vector x ∈ Rm, x′ denotes the transpose of x, and ∥x∥
denotes the 2-norm, i.e., ∥x∥ = (x′x)1/2. For a square matrix A =

(aij)n×n, ∥A∥denotes the 2-normofA, i.e., ∥A∥ =
√

λmaxAA′. For any
two positive sequences {an, n ≥ 1} and {bn, n ≥ 1}, an = O(bn)
means that there exists a positive constant C independent of n,
such that an ≤ Cbn for any n ≥ 1; an = o(bn) (or (an ≪ bn))
means that limn→∞

an
bn

= 0; an = Θ(bn), if there exist two positive
constants C1 and C2, such that C1bn ≤ an ≤ C2bn.

2. Leaderless synchronization

2.1. Problem formulation

Consider a group of n unicycle robots (or agents) moving in a
plane. For a robot i (i = 1, 2 · · · , n), the position of its center
at time t (t ≥ 0) is denoted by Xi(t) = (xi(t), yi(t))′ ∈ R2.
The orientation and moving speed of each robot are affected by
the states of its local neighbors. A pair of two robots is said to
be neighbors if their Euclidean distance is less than a pre-defined
radius rn. We use Ni(t) to denote the set of the robot i’s neighbors
at time t , i.e.,

Ni(t) =

j : ∆ij(t) < rn


, (1)

where ∆ij(t) = ∥Xi(t) − Xj(t)∥ is the Euclidean distance between
robots i and j. The cardinality of the set Ni(t), i.e., the degree of the
agent i, is denoted as di(t). When the robots move in the plane, the
neighbor relations dynamically change over time. We use graph
Gt = {V , Et} to describe the relationship between neighbors at
time t , where the vertex set V = {1, 2, . . . , n} is composed of
all robots, and the edge set is defined as Et = {(i, j) ∈ V × V :

∆ij(t) < rn}. The neighbor graphs are distance-induced, and also
called geometric graphs or proximity networks.

Let θi(t) and vi(t) denote the moving orientation and transla-
tional speed of the ith robot at time t . The dynamics of the robots



Download English Version:

https://daneshyari.com/en/article/5000203

Download Persian Version:

https://daneshyari.com/article/5000203

Daneshyari.com

https://daneshyari.com/en/article/5000203
https://daneshyari.com/article/5000203
https://daneshyari.com

