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a b s t r a c t

This paper presents a new design of boundary controllers for global practical K∞-exponential p-
stabilization of vibration motions of extensible marine risers in three-dimensional (3D) space under both
stochastic and deterministic sea loads. The control design and analysis of well-posedness and stability of
the closed-loop system are carried out based on a new Lyapunov-type theorem, which is developed for
studying well-posedness and p-stability of a class of stochastic evolution systems (SESs) in Hilbert space.
Since this theorem eases difficulties in verification of the coercivity condition but requires conditions of
a form similar to Lyapunov-type theorems for stochastic lumped-parameter systems, it has a potential
application to other stochastic distributed-parameter systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reducing the riser vibration by means of boundary feedback
control is effective since this control system is simple for
implementation and does not introduce drag. In existing works
on boundary control of marine risers, e.g., Do (2011), Do (2017),
Do (in press), Do and Pan (2008, 2009), Fard and Sagatun (2001),
Ge, He, How, and Choo (2010), He and Ge (2015), He, Ge, How,
Choo, and Hong (2011); He, Ge, Voon, How, and Choo (2014);
He, Sun, and Ge (2015); He, Zhang, and Ge (2013), Lu, Chen, Yao,
and Wang (2013) and Nguyen, Do, and Pan (2013), the Lyapunov
direct method is used. The common feature includes: (1) search
for a proper Lyapunov functional, which consists of the system
energy plus a perturbed term to utilize the structural damping; (2)
design a boundary control tomake time derivative of the Lyapunov
functional negative definite; and (3) perform well-posedness and
stability analysis. There are two types of the perturbed term,which
result in two types of boundary controls. Let η(s, t) denote the
vector of the riser displacements with the spatial variable s and
time t; ηt :=

∂η

∂t ; ηs :=
∂η

∂s ; η
B

:= η|s=L; and 0, K1 and K2 be
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positive definite matrices. The two types of the perturbed term Vp
result in either ‘‘PD’’ or ‘‘DD’’ boundary control ub in the following
table.

‘‘PD’’ boundary control ‘‘DD’’ boundary control
Vp =

 L
0 η

T0ηtds Vp =
 L
0 η

T
s 0ηtsds

ub = −K1η
B
− K2η

B
t ub = −K1η

B
s − K2η

B
t

It is crucial to choose proper matrices 0 (small), K1 and
K2 to make the Lyapunov functional proper and its derivative
negative definite. The ‘‘DD’’-control introduces some (small)
damping but requires measurement of slope ηBs instead of dis-
placement ηB in ‘‘PD’’-control. Apart from the above Lyapunov-
based approach, a novel method based on the backstepping
method (Krstic, Kanellakopoulos, & Kokotovic, 1995) was de-
veloped to design boundary controllers for flexible systems in
Bohm, Krstic, Kuchler, and Sawodny (2014), Krstic and Smyshlyaev
(2008a,b), Krstic, Siranosian, Balogh, and Guo (2007) and Krstic,
Siranosian, and Smyshlyaev (2006). This approach can introduce
large damping to the system but is difficult to apply to the riser
system in this paper due to difficulties in finding proper gain
kernels.

Although sea loads on marine risers are both deterministic
and stochastic (Faltinsen, 1993), the above works on boundary
control of the risers have considered only deterministic loads. This
deteriorates the control performance or even results in an unstable
closed-loop system, see Remark 4.2.2. The stochastic loads on risers
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require: (1) an amendment in the riser dynamics in Do (2017);
(2) tools for control design and stability analysis for stochastic
partial differential equations (SPDEs).Well-posedness and stability
of stochastic beams under Lipschitz conditions were studied in
Brzezniak, Maslowski, and Seidler (2005), Chow (2007), Chow and
Menaldi (2014) and Zhang (2007). Note that it is difficult to apply
well-posedness results developed for parabolic SPDEs in Da Prato
and Zabczyk (1992), Gawarecki and Mandrekar (2011), Liu (2006),
Liu and Mandrekar (1997) and Pardoux (1979), to stochastic risers
since their motions are described by hyperbolic SPDEs due to
difficult verification of the coercivity condition.

The above review motivates a consideration of reducing vibra-
tion of extensible marine risers under stochastic and deterministic
sea loads in 3D by boundary control. Themain contributions of this
paper include three folds. First, a mathematical model describing
motion of extensible marine risers in 3D under both determinis-
tic and stochastic sea loads is derived in an appropriate form for
boundary control design. In comparison with the models used in
existing works (e.g., Do, 2011, Do, 2017, Do, in press, Do & Pan,
2008, 2009, Fard & Sagatun, 2001, Ge et al., 2010, He &Ge, 2015, He
et al., 2011, 2014, 2015, 2013, Lu et al., 2013, Nguyen et al., 2013),
the stochastic components of sea loads are included.

Second, a Lyapunov-type theorem is proposed for study of
well-posedness and stability (global p-stability, global (practical)
K∞-exponential p-stability) of a class of SESs. This theorem
just requires: (1) continuity and local monotonicity conditions
on the system functions; and (2) ‘‘usual’’ conditions on the
Lyapunov function and its infinite generator. The usual conditions
are of a form similar to those for stochastic lumped-parameter
systems in Deng, Krstic, and Williams (2001), Khasminskii
(1980) and Mao (2007). Thus, difficulties in verification of the
coercivity condition as in Gawarecki and Mandrekar (2011) are
relaxed.

Third, boundary controllers are designed to achieve global
well-posedness and (practical) K∞-exponential p-stability of the
marine risers based on the proposed Lyapunov-type theorem. In
comparison with existing works (Do, 2011, 2017, in press; Do &
Pan, 2008, 2009; Fard & Sagatun, 2001; Ge et al., 2010; He & Ge,
2015; He et al., 2011, 2014, 2015, 2013; Lu et al., 2013; Nguyen
et al., 2013), the control design in this paper shares a common fea-
ture of finding a proper Lyapunov function. However, the difficulty
is to design boundary controls to make the infinite generator (in-
stead of time derivative) of the Lyapunov function negative defi-
nite. The infinite generator contains Hessian terms due to stochas-
tic components. Although the final form of the boundary con-
trollers is ‘‘PD’’, the Hessian terms make the control design much
harder than those in the existingworks. Moreover, well-posedness
and stability analysis need to use the Lyapunov-type theorem de-
veloped for SESs in this paper. Note that the works in Do (2017) for
vibration control and Do (in press) for large defection control are
developed for risers/beams under deterministic loads, and that
well-posedness and stability analysis tools developed in Do (2017)
and Do (in press) are for deterministic evolution systems, see also
Remarks 2.1 and 3.1. The common feature among Do (2017) and
Do (in press) and this paper is the treatment in Hilbert space.

Notations. We denote by the symbols ∧ and ∨ the min and max
operators, respectively. These operators are also applied to more
than two arguments (e.g., a ∧ b ∧ c := min(a, b, c) and a ∨

b ∨ c := max(a, b, c); a, b, and c are scalars). The symbol E
denotes the expected value. The symbol col denotes the column
operator.

Fig. 1. Riser coordinates and boundary conditions.

2. Problem formulation

2.1. Stochastic model of marine risers in 3D

The riser’s configuration is shown in Fig. 1. Let (u, v, w) denote
(perturbed) displacements of the riser along the OX-, OY -, and
OZ-axis from the point N0 of the reference riser center line to the
point N of the deformed riser center line at time t . To derive the
equations of motion of the riser, we use the extended Hamiltonian
principle (Craig & Kurdila, 2006): t2

t1
δ(T − V + Wc)dt = 0, (1)

where T is the kinetic energy, V is the potential energy, Wc
denotes the virtual work by nonconservative forces and the virtual
momentum transport at boundaries, and δ is variation taken
during the time interval. Assume that the plane sections of the
riser remain plane after deformation; the riser is locally stiff and its
material is homogeneous, isotropic and linearly elastic; torsional
moments are neglected. The kinetic energy T is

T =
mo

2

 L

0
(u2

t + v2t + w2
t )dz +

m1H

2
u2
t (L, t)

+
m2H

2
v2t (L, t)+

m3H

2
w2

t (L, t), (2)

where the arguments (z, t) are dropped for clarity,mo = ϱA + ma
with ϱ the mass per unit length, A the cross section area of the
riser, and ma the added mass; L is the riser length at the initial
configuration; the symbol •t denotes ∂•

∂t ; miH , i = 1, 2, 3 are the
mass of the actuators; and (ut(L, t), vt(L, t), wt(L, t)) denote the
value of (ut , vt , wt) at z = L. If an actuator allowing parallel
displacements is used, then m1H = m2H = m3H . If individual
actuators are installed on a 3D guide tubemechanism, thenm1H ≠

m2H ≠ m3H , see Fig. 1. The potential energy V consisting of the
strain energy and the energy due to the riser tension and bending
moment is:

V =
EA
2

 L

0
ε2dz +

P0
2

 L

0
(u2

z + v2z )dz +
EI
2

 L

0
(κ2

1 + κ2
2 )dz, (3)

where E is Young’s modulus; I is the moment of inertia of the
riser cross section; P0 is the constant axial force; ε(z, t) is the axial
strain; κ1 and κ2 are bending curvatures in OXZ and OYZ planes;
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