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a b s t r a c t

This paper deals with the general discounted impulse control problem of a piecewise deterministic
Markov process.We investigate a new family of ϵ-optimal strategies. The construction of such strategies is
explicit and only necessitates the previous knowledge of the cost of the no-impulse strategy. In particular,
it does not require the resolution of auxiliary optimal stopping problem or the computation of the value
function at each point of the state space. This approach is based on the iteration of a single-jump-or-
intervention operator associated to the piecewise deterministic Markov process.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to propose a new family of ϵ-optimal
strategies for the impulse control problem of piecewise deter-
ministic Markov processes (PDMPs) defined by O.L.V. Costa and
M.H.A. Davis in Costa and Davis (1989). We consider the infinite
horizon expected discounted impulse control problem where the
controller instantaneously moves the process to a new point of the
state space at some controller specified time.

Piecewise deterministic Markov processes have been intro-
duced by M.H.A. Davis in Davis (1984) and Davis (1993) as a gen-
eral class of stochastic hybrid models. These processes have two
variables: a continuous one representing the physical parameters
of the system and a discrete one which characterizes the regime
of operation of the physical system and/or the environment. The
process depends on three local characteristics: the flow, the jump
intensity and the Markov kernel. The path of a PDMP consists of
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deterministic trajectories punctuated by random jumps. Starting
from a point of the state space, the PDMP follows a deterministic
trajectory determined by the flow, until the first jump time. This
time is drawn either in a Poisson like fashion following the jump
intensity or deterministically when the process hits the boundary
of the state space. The new position and regime of the PDMP are
selected by the Markov kernel. Then the process follows again a
deterministic trajectory until the next jump time and so on. There
are many and diverse applications of PDMPs for example in queu-
ing or inventory systems, insurance, finance, maintenance mod-
els (Bäuerle & Rieder, 2011; Dassios & Embrechts, 1989; Davis,
1993) or in data transmission (Chafaï, Malrieu, & Paroux, 2010) and
in biology (Doumic, Hoffmann, Krell, & Robert, 2015; Pakdaman,
Thieullen, & Wainrib, 2010). The interested reader can also refer
to de Saporta, Dufour, and Zhang (2015) for some applications in
reliability.

Impulse control corresponds to the following situation: the pro-
cess runs until a controller decides to intervene by instantaneously
moving the process to some new point of the state space. Then,
restarting at this new point, the process runs until the next inter-
vention and so on. Many authors have considered impulse control
for PDMPs, either by variational inequality (Dempster & Ye, 1995;
Ga̧tarek, 1992; Lenhart, 1989) or by value improvement (Costa &
Davis, 1989). The simplest form of impulse control is optimal stop-
ping, where the decision maker selects only one intervention time
when the process is stopped. Optimal stopping for PDMPs has been
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studied in Costa and Davis (1988), de Saporta, Dufour, and Gonza-
lez (2010) and Gugerli (1986).

For a general infinite horizon expected discounted impulse
control problem, a strategy consists in two sequences of controller-
specified random variables defining the intervention times and
new starting points of the process. Solving this problem involves
finding a strategy that minimizes the expected sum of discounted
running and intervention costs up to infinity. The minimal cost is
called the value function. In general, optimal strategies donot exist.
Instead, one considers ϵ-optimal strategieswhose cost differs from
the value function at most of ϵ.

The analysis of ϵ-optimal controls is interesting in its own right
independently to the fact that the optimal control problem has an
optimal solution. Indeed, from a theoretical point of view, PDMPs
have been extensively studied. There exist several techniques to
analyze such optimization problems that are known to be very
efficient for establishing different mathematical properties (such
as existence of optimal policies, smoothness of the value function,
sufficiency of sub-classes of particular policies, etc.). However,
the problem of solving explicitly an optimal control problem for
a PDMP remains a critical issue. Except for very few specific
models, the determination of an optimal policy and the value
function is an extremely difficult problem to tackle. The standard
approach for solving an optimal control problem for a PDMP is
to develop numerical methods to get quasi-optimal solutions.
This topic is, therefore, of crucial importance to demonstrate the
practical interest of PDMP as a powerful modeling tool. Thus, it
is important to obtain computable ϵ-optimal control. The crucial
point is to derive an ϵ-optimal control that can be explicitly
computed, generally in terms of the value function. The next step,
that will be the objective of a next work, consists in a numerical
approximation of such strategies.

There exists an extensive literature related to the study of
the optimality equation associated to expected discounted control
problems but few works are devoted to the characterization of
ϵ-optimal strategies. The objective of the paper is to explicitly
construct such strategies. An attempt in this direction has been
proposed in Costa and Davis (1989, section 3.3). One step of their
approach consists in solving an optimal stopping problem which
makes this technique quite difficult to implement. Furthermore the
knowledge of the optimal value function is required.

We propose a construction of an ϵ-optimal strategy which
necessitates only the knowledge of the cost of the non-impulse
strategy and without solving technical problems preliminary.
This construction is based on the iteration of a single-jump-or-
intervention operator associated to the PDMP. It builds on the
explicit construction of ϵ-optimal stopping times developed in
Gugerli (1986) for the optimal stopping problem. However, for the
general impulse control problem, one must also optimally choose
the new starting points of the process, which is a significant source
of additional difficulties. It is important to emphasize that our
method has the advantage of being constructive with regard to
other works in the literature on impulse control problem.

This work is also the first step toward a tractable numerical
approximation of ϵ-optimal strategies. A numerical method to
compute the value function is proposed in de Saporta and Dufour
(2012). It is based on the quantization of an underlying discrete-
time Markov chain related to the continuous process and path-
adapted time discretization grids. Discretization of ϵ-optimal
strategies will be the object of a future work.

The paper is organized as follows. In Section 2 we recall the
definition of a PDMP and state the impulse control problem under
study. In Section 3, we construct a sequence of approximate value
functions. In Section 4,we build an auxiliary process corresponding
to an explicit family of strategies and we show that the cost of
the controlled trajectories corresponds to the approximate value
function built in Section 3. Technical details are gathered in the
Appendix.

2. Impulse control problem of PDMP

We introduce first some standard notation before giving a
precise definition of a piecewise deterministic Markov processes
(PDMP) and of our impulse control problem.

For a, b ∈ R, a ∧ b = min(a, b) is the minimum of a and b. By
convention, set inf∅ = ∞. Let X be a metric space with distance
dX. For a subset A of X, ∂A is the boundary of A and Ā its closure.
We denote B(X) the Borel σ -field of X and B(X) the set of real-
valued, bounded and measurable functions defined on X. For any
function w ∈ B(X), we write Cw for the upper bound of |w|, that
is Cw = supx∈X |w(x)|. For a Markov kernel P on (X,B(X)) and
functionsw in B(X), for any x ∈ X, set Pw(x) =


X
w(y)P(x, dy).

2.1. Definition of PDMP

Let M be the finite set of the possible regimes or modes of the
system. For all modes m in M , let Em be an open subset of Rd

endowed with the usual Euclidean norm | · |. Set E = {(m, ζ ),m ∈

M, ζ ∈ Em}. Define on E the following distance, for x = (m, ζ ) and
x′

= (m′, ζ ′) ∈ E,

|x − x′
| = |ζ − ζ ′

|1{m=m′} + ∞1{m≠m′}.

A piecewise deterministic Markov process on the state space E is
determined by three local characteristics:

• the flow Φ(x, t) = (m,Φm(ζ , t)) for all x = (m, ζ ) in E and
t ≥ 0, where Φm : Rd

× R+
→ Rd is continuous such that

Φm(·, t + s) = Φm(Φm(·, t), s), for all t, s ∈ R+. It describes the
deterministic trajectory between jumps. We set t∗(x) the time
the flow takes to reach the boundary of E when it starts from
x = (m, ζ ):

t∗(x) = inf{t > 0 : Φm(ζ , t) ∈ ∂Em}.

• the jump intensity λ : Ē → R+ is a measurable function and
has the following integrability property: for any x = (m, ζ ) in
E, there exists ϵ > 0 such that ϵ

0
λ(m,Φm(ζ , t))dt < +∞.

For all x = (m, ζ ) in E and t ∈ [0, t∗(x)), we set

Λ(m, ζ , t) =

 t

0
λ(m,Φm(ζ , s))ds. (1)

• the Markov kernel Q on (Ē,B(Ē)) is the transition measure of
the process. It selects the new location after a jump. It satisfies
for all x ∈ Ē, Q (x, {x} ∪ ∂E) = 0: each jump is made in E and
changes the location and/or the mode of the process.

It can be shown (Davis, 1993, section 25) that there exists a filtered
probability space (Ω,F , {Ft}, {Px}x∈E) onwhich a process {Xt} can
be defined as a strong Markov process. The process {Xt} has two
componentsXt = (mt , ζt), the first onemt is called themode or the
regime and the second one ζt is the so-called Euclidean variable.
The motion of this process can be defined iteratively as follows.
Starting at an initial point X0 = (m0, ζ0) ∈ M × Em0 , the first jump
time T1 is determined by

P(m0,ζ0)({T1 > t}) = e−Λ(m0,ζ0,t)1{t<t∗(m0,ζ0)}. (2)

On [0, T1), the process {Xt} follows the deterministic trajectory
mt = m0, ζt = Φm0(ζ0, t). At the random time T1, a jump occurs.
It can produce either a discontinuity in the Euclidean variable
ζt and/or change of mode. The process restarts at a new mode
and/or position XT1 = (mT1 , ζT1), according to the distribution
Q ((m0,Φm0(ζ0, T1)), ·). An inter jump time T2−T1 is then selected
in a similar way to Eq. (2), and on the interval [T1, T2), the process
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