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a b s t r a c t

We present a method for robust input design for nonlinear state-space models. The method optimizes a
scalar cost function of the Fisher information matrix over a set of marginal distributions of stationary
processes. By using elements from graph theory we characterize such a set. Since the true system is
unknown, the resulting optimization problem takes the uncertainty on the true value of the parameters
into account. In addition, the required estimates of the information matrix are computed using particle
methods, and the resulting problem is convex in the decision variables. Numerical examples illustrate the
proposed technique by identifying models using the expectation–maximization algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Input design is concerned with generating an excitation signal
that maximizes the information retrieved from an experiment,
quantified in terms of a cost function related to the intended
model application. Some of the initial contributions are discussed
in Cox (1958) and Goodwin and Payne (1977). Since then, many
contributions to the subject have been presented; see e.g. Fedorov
(1972), Gevers (2005), Hildebrand and Gevers (2003), Whittle
(1973) and the references therein.

In the case of dynamical systems, the existing results on input
design are mostly focused on linear models. The assumption of a
linear model structure can reduce the complexity of the problem,
leading to formulations that are convex in the decision variables
(Ljung, 1999). In this case, the convexity of the problem is achieved
by designing the power spectrum of the input signal. Several
approaches to input design for linear models have been proposed
in the literature involving, e.g., linear matrix inequalities (LMI)

✩ Thisworkwas supported by the Swedish Research Council under contracts 621-
2013-5524, 621-2011-5890 and 621-2009-4017, and by the European Research
Council under the advanced grant LEARN, contract 267381. The material in this
paper was partially presented at the 19th World Congress of the International
Federation of Automatic Control (IFAC 2014), August 24–29, 2014, Cape Town,
South Africa. This paper was recommended for publication in revised form
by Associate Editor Alessandro Chiuso under the direction of Editor Torsten
Söderström.

E-mail addresses: pva@kth.se (P.E. Valenzuela), liu@johandahlin.com
(J. Dahlin), crro@kth.se (C.R. Rojas), thomas.schon@it.uu.se (T.B. Schön).

(Jansson & Hjalmarsson, 2005; Lindqvist & Hjalmarsson, 2000),
Markov chains (Brighenti, Wahlberg, & Rojas, 2009), and time
domain techniques (Suzuki & Sugie, 2007). With the exception of
the methods in Jansson and Hjalmarsson (2005) and Lindqvist and
Hjalmarsson (2000) that rely on convexification of the problem,
the previous formulations are non-convex, which illustrates the
difficulty of solving the input design problem.

In recent years, there has been an interest to extend the in-
put design methods to nonlinear (NL) model structures. The main
issue is that the frequency domain methods cannot be applied,
which restricts the applicability of convex formulations (Jansson &
Hjalmarsson, 2005; Lindqvist & Hjalmarsson, 2000). The first ap-
proaches to the problem considered NL finite impulse response
(FIR)models (Hjalmarsson&Mårtensson, 2007; Larsson, Hjalmars-
son, & Rojas, 2010). In Hjalmarsson and Mårtensson (2007) the in-
put design problem is analyzed using the knowledge from linear
systems, while in Larsson et al. (2010) the input design problem is
solved over a set of marginal distributions of stationary processes.

An extension of the input design problem to structured NL
models is presented in Vincent, Novara, Hsu, and Poolla (2009,
2010), where the model is given by an interconnection of linear
models and static nonlinearities. The class of NL model structures
is also generalized in Forgione, Bombois, Van den Hof, and
Hjalmarsson (2014), where the input signal is optimized over
an alphabet with finite cardinality. A multilevel excitation is
also considered in De Cock, Gevers, and Schoukens (2013) for
identification ofWienermodels. The restriction to a finite alphabet
is relaxed in Gopaluni, Schön, and Wills (2011), where an ARX
process is designed as input for the identification of NL state-
space models (SSMs). A graph theoretical methodology to design
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inputs for identification of NL output-error models is developed
in Valenzuela, Rojas, and Hjalmarsson (2013, 2015), which is
extended to NL-SSMs in Valenzuela, Dahlin, Rojas, and Schön
(2014).

The existing results on input design allow to optimize input
signals when the system contains NL functions, but the restrictions
on the system dynamics and/or the input structure are the main
limitations of most of the previous contributions. Moreover, with
the exception of multilevel excitation (Forgione et al., 2014;
Larsson et al., 2010), and stationary processes (Brighenti et al.,
2009; Valenzuela et al., 2014, 2013, 2015), most of the proposed
methods cannot handle amplitude limitations on the input signal,
which could arise due to physical and/or safety reasons.

The previously mentioned input design methods assume
that a prior estimate of the model parameters is available for
optimization. The requirement of such knowledge is a common
issue in input design and different solutions to this difficulty
have been proposed (Gerencsér, Hjalmarsson, &Mårtensson, 2009;
Rojas, Aguero,Welsh, Goodwin, & Feuer, 2012; Rojas, Hjalmarsson,
Gerencsér, & Mårtensson, 2011; Rojas, Welsh, Goodwin, & Feuer,
2007; Welsh & Rojas, 2009).

The main contribution of this article is to propose a robust
input design method for the identification of NL-SSMs with input
constraints, which extends the model structure considered in
Valenzuela et al. (2013, 2015), and the nominal input design
presented in Valenzuela et al. (2014). The optimal input signal
is considered to be a realization of a stationary process, which
maximizes a scalar function of the Fisher informationmatrix (FIM).
To pose a tractable convex problem, we restrict the optimization
to a set of marginal distributions of stationary processes with
a finite alphabet. This set is a polytope and hence it can be
described by a convex combination of its vertices. The vertices
are cumulative distribution functions that can be found using
de Bruijn graphs, as discussed in Valenzuela et al. (2014, 2013).
Since the vertices of the set are known, we can draw an input
realization and compute an estimate of the FIM for each vertex
using particle methods (Del Moral, Doucet, & Jasra, 2006; Doucet
& Johansen, 2011). The estimates of the information matrices are
computed using the method introduced in Segal and Weinstein
(1989), which only requires one realization of the input–output
data, and thus reducing the computational effort when estimating
the FIM compared to Valenzuela et al. (2014).

Tomake the input design robust against model uncertainty, the
optimization problem considers a measure of the uncertainty of
the parameters, which relaxes the requirements on the knowledge
of the system assumed in Valenzuela et al. (2014, 2013, 2015).
The method is illustrated through numerical examples, where
the designed input is employed to identify a NL-SSM using the
expectation–maximization (EM) algorithm (Dempster, Laird, &
Rubin, 1977;McLachlan & Krishnan, 2008; Schön,Wills, & Ninness,
2011).

The rest of this article is organized as follows. Section 2 states
the problem and the main challenges when designing inputs for
identification of NL-SSM. Section 3 describes the graph theoretical
approach to input design. Section 4 discusses the estimation of the
FIM using particle methods. A summary of the proposed robust
input design method is presented in Section 5. The generation of
the optimal input signal is addressed in Section 6. To illustrate the
correctness and utility of the method, two numerical examples are
discussed in Section 7. Finally, Section 8 concludes this work and
presents future research directions.
Notation: Throughout this article, N denotes the set of natural
numbers, Rp denotes the set of p-dimensional vectors with real
entries, Rp×r is the set of p × r matrices with real entries,
and R+ the set of positive real numbers. P, E, and Var{·} stand
for a probability measure, the expected value, and the variance,
respectively. Sometimes a subscript is added to P and E to clarify
the stochastic process considered by these operators. Finally, for a
finite set A, |A| denotes its cardinality.

2. Problem formulation

Consider a NL-SSM described for all t ≥ 1 by

xt |xt−1 ∼ fθ (xt |xt−1, ut−1), (1a)
yt |xt ∼ gθ (yt |xt , ut), (1b)

x0 ∼ µθ (x0), (1c)

where fθ , gθ , and µθ denote probability density functions (pdf)
parameterized by θ ∈ Θ ⊂ Rnθ (where Θ is an open set).
Here, ut ∈ Rnu denotes the input signal, xt ∈ Rnx are the
(unobserved/latent) internal states, and yt ∈ Rny are themeasured
outputs.

The objective in this article is to design an input signal u1:nseq :=

(u1, . . . , unseq), as a realization of a stationary process, such that
the NL-SSM (1) can be identified with maximum accuracy as
defined by a scalar function of the FIM (Ljung, 1999). In the sequel,
we assume that there exists at least one parameter θ0 ∈ Θ

such that the model (1) exactly describes the pdfs of the system,
i.e., there is no undermodeling (Ljung, 1999).

Given u1:nseq , the FIM is defined as

I
nseq
F (θ0) := E


S(θ0)S

⊤(θ0)| u1:nseq


, (2)

where S(θ0) denotes the score function, i.e.,

S(θ0) := ∇θ ℓθ (y1:nseq)

θ=θ0

. (3)

Here, ℓθ (y1:nseq) denotes the log-likelihood function

ℓθ (y1:nseq) := log pθ (y1:nseq |u1:nseq). (4)

We note that the expected value in (2) is with respect to the
stochastic processes in (1). Sincewe consider u1:nseq as a realization
of a stationary process, here we are interested in the per-sample
FIM, defined as

IF (θ0) :=
1

nseq
Eu


I
nseq
F (θ0)


=

1
nseq

E

S(θ0)S

⊤(θ0)

, (5)

where the expected value in (5) is over both the stochastic
processes in (1), and the stochastic vector u1:nseq .

We note that (5) depends on the cumulative distribution
function (cdf) of u1:nseq , denoted by Pu(u1:nseq). Therefore, the input
design problem is to find a cdf Popt

u (u1:nseq) which maximizes a
scalar function of (5),H : Rnθ×nθ ×Θ → R, where1 H is a matrix
concave function in its first argument (Boyd & Vandenberghe,
2004, pp. 108). Different choices of H have been proposed in
the literature, see e.g. Rojas et al. (2007); some examples are
H(A, θ) = log det(A), and H(A, θ) = − tr{A−1} for A ∈ Rnθ×nθ

non-singular.
To simplify our problem, we will assume that ut can only adopt

a finite number cseq of values. We denote this set of values as C.
With the previous assumption, we can define the following set:

PC :=


pu : Cnseq → R

 pu(x) ≥ 0, ∀x ∈ Cnseq;
x∈Cnseq

pu(x) = 1;


v∈C

pu(v, z) =

v∈C

pu(z, v), ∀z ∈ Cnseq−1

. (6)

1 We let H have an argument on Θ as the function can explicitly depend on the
model parameter.
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