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a b s t r a c t

This paper proposes an alternative extremum seeking control design technique for the solution of real-
time optimization control problems. The technique considers a proportional-integral approach that
minimizes the impact of a time-scale separation on the transient performance of the extremum-seeking
controller. It is assumed that the equations describing the dynamics of the nonlinear system and the cost
function to be minimized are unknown and that the objective function is measured. The dynamics are
assumed to be of relative degree one with respect to the objective function. Two simulation examples are
presented to demonstrate the effectiveness of the proposed technique.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extremum-seeking control (ESC) is an established control tech-
nology that is used to solve various classes of real-time optimiza-
tion problems (Tan, Moase, Manzie, Nesic, & Mareels, 2010). It is
an extremely appealing approach in practice since it does not re-
quire any specific knowledge of the process dynamics and the cost
function. However, the application of ESC is generally limited to
the solution of steady-state optimization problem inwhich the op-
timization procedure is handled at a much slower time-scale than
the unknown process dynamics. As demonstrated in the seminal
work of Krstic and co-workers (see Krstic &Wang, 2000), there are
extremely valid technical justifications for theneed for a time-scale
separation in ESC. With the help of averaging analysis and singular
perturbation methods, the analysis leads to a very general conver-
gence results with minimal assumptions on the process dynamics
and cost function. The stability analysis relies on two components:
(1) an averaging analysis of the persistently perturbed ESC loop and
(2) a time-scale separation of ESC closed-loop dynamics between
the fast transients of the system dynamics and the slow quasi
steady-state extremum-seeking task. Unfortunately, the need for
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a time-scale separation inevitably leads to slow transient perfor-
mance.

Many researchers have considered various approaches to over-
come the limitations of ESC. In Krstic (2000), performance im-
provements of ESC were considered using a dual-mode ESC and
a phase compensation strategy. The non-local properties on ESC
was studied in Tan, Nesic, and Mareels (2006). This work ex-
tends the work in Krstic and Wang (2000) by considering the
case where the fast dynamics can be assumed to be uniformly
global asymptotically stable along the equilibrium manifold. In
Adetola and Guay (2007) and Guay, Dochain, and Perrier (2004),
an alternative ESC algorithm is considered where an adaptive
control and estimation approach is used. The key aspect of this
approach is that the equilibrium map is parameterized and the
parameters are estimated with the help of a tailored adaptive es-
timation technique. The results in Nesic, Mohammadi, and Manzie
(2010) unify the approaches based on singular perturbation and
parameter estimation by considering the case where the objective
function is parameterized in a known fashion. Moase and Manzie
(2012) propose a fast extremum seeking approach for a class of
Wiener–Hammerstein processes. Recent work reported in Ghaf-
fari, Krstic, and Nesic (2012) and Moase, Manzie, and Brear (2010)
have proposed a Newton-based extremum-seeking technique that
provides an estimate of the inverse of the Hessian of the cost
function. This technique can effectively alleviate the convergence
problems associated with the increase of the gain of the Newton
update. A time-varying ESC design technique was proposed in
Guay and Dochain (2015) that utilizes an alternative mechanism
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for the estimation of the gradient. The approach is shown to pro-
vide significant improvement in transient performance. Other al-
ternative techniques such as proposed by Zhang and Ordóñez
(2009) make use of sampled gradient measurements to improve
the convergence properties of ESC techniques that implement nu-
merical optimization techniques. A sliding-mode approach is pre-
sented in Fu and Özgüner (2011). The main feature of existing
approaches is the use of some variation of a gradient descent algo-
rithm that requires the integration of an estimate of the gradient
of the unknown cost function subject to some form of filter and a
dither signal.

Although the limitations associated with the tuning of ESC
are generally well understood, the two time-scale nature of ESC
systems remains problematic. Under the two time-scale assump-
tion, the optimization operates at a quasi steady-state, or slow,
time-scale such that the search for optimal operating conditions
does not affect the process dynamics. To overcome the time-scale
separation, onemust incorporate some knowledge of the transient
behavior of the process dynamics. In the case where a model is
available, one can use adaptive extremum seeking technique as
proposed in Guay and Zhang (2003) to stabilize a nonlinear system
to the unknown optimum of a known but unmeasured cost func-
tion. Such techniques can solve the steady-state optimization ESC
problem without the need for time-scale separation. In Scheinker
and Krstic (2013), Lie bracket averaging techniques are considered
to stabilize unknown dynamical systems using ESC. Although the
objectives of the study presented in Scheinker and Krstic (2013)
are different from those pursued in this study, the Lie bracket av-
eraging approach proposed remains relevant as a potential mech-
anism to remove the time-scale separation requirement in ESC. At
the current time, its application to ESC remains based on the as-
signment of a time-scale parameter.

ESC problems cannot be currently solved in the absence of
time-scale separations if explicit process models are not available.
This paper attempts to bridge this gap in the application of ESC.
It develops and generalizes a proportional-integral ESC (PI-ESC)
design technique first introduced in Guay and Dochain (2014).
The PI-ESC operates using two modes. The integral control mode
corresponds to the standard ESC task and is used to identify
the steady-state optimum conditions. The proportional control
mode is designed to ensure that the measured cost function is
optimized instantaneously. The combined action of the twomodes
provides an additional proportional action tuning parameter that
can be used to minimize and, potentially eliminate, the impact of
time-scale separation on the transient performance of ESC systems.
In this manuscript, we establish new convergence properties of
the PI-ESC proposed in Guay and Dochain (2014). We also provide
precise convergence conditions that can be extended to systems
where the cost function is not necessarily of relative degree one.
It is also shown that the PI-ESC can be used to stabilize a class of
unstable control systems.

The paper is organized as follows. A brief description of the
ESC problem is given in Section 2. The proposed proportional-
integral ESC controller is described in Section 3. Two simulation
examples are presented in Section 4 followed by brief conclusions
in Section 5.

2. Problem description

We consider a class of nonlinear systems of the form:

ẋ = f (x) + g(x)u (1)
y = h(x) (2)

where x ∈ Rn is the vector of state variables, u is the vector of
input variables taking values in U ⊂ Rp and y ∈ R is the variable

to beminimized. It is assumed that f (x) and g(x) are smooth vector
valued functions of x and that h(x) is a smooth function of x.

The objective is to steer the system to the equilibrium x∗ (and
corresponding u∗) that achieves theminimum value of y(= h(x∗)).
Some additional assumptions are required concerning the cost
function h(x).

Assumption 1. The cost h(x) is such that

(1) ∂h(x∗)

∂x = 0

(2) ∂2h(x)
∂x∂xT

> βI, ∀x ∈ Rn

where β is a strictly positive constant.

We denote the Lie derivatives of h(x) with respect to f (x) and g(x)
as Lf h and Lgh, respectively. The Lie derivative is the directional
derivative of the function h(x) given by:

Lf h =
∂h
∂x

f , Lgh =
∂h
∂x

g.

In this study, we will consider a state-feedback control of the form
u = −k∗LghT

+ûwhere û is a constant vector and, k∗, a nonnegative
constant.

The equilibrium (or steady-state) map is the n dimensional
vector x = π(û) that solves the following equation:

f (π(û)) − k∗g(π(û))Lgh(π(û))T + g(π(û))û = 0.

The corresponding equilibrium cost function is given by:

y = h(π(û)) = ℓ(û). (3)

At equilibrium, the problem is reduced to finding the minimizer
u∗ of y = ℓ(u∗). In the following, we let D(û) represent a
neighborhood of the equilibrium x = π(û). We also require the
following properties for the dynamics:

Assumption 2. The dynamics (1) are such that the output h(x) has
strong relative degree one ∀x ∈ D(û) and ∀û ∈ U.

Under Assumption 2, one can find a diffeomorphism [ξ, y] = Θ(x)
that transforms the control system dynamics into the well-known
Byrnes–Isidori form given by:

ξ̇ = φ(ξ, y)
ẏ = Lf h + Lghu

where ξ ∈ Rn−1, φ is a smooth vector valued function of ξ and
y = h(x). The next assumption associates a stability result to the
control system using the proposed state-feedback controller.

Assumption 3. The normal form dynamics have the following
property:

• the zero dynamics of the system are input to state stable from
y to ξ with Lyapunov function W (ξ),

• the function W (ξ) + h(x) is such that:

β1∥x − π(û)∥2
≤ W (ξ) + h ≤ β2∥x − π(û)∥2

for some positive constants β1, β2,
• there exists a nonnegative constant k∗ such that:

∂W
∂ξ

φ(ξ, y) + Lf h − k∗
Lgh2

+ Lghû ≤ −α3∥x − π(û)∥2 (4)

for some positive constant α3 ∀x ∈ D(u) and ∀û ∈ U.

Finally, the following additional assumption concerning the
steady-state cost function ℓ(u) is required.
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