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a b s t r a c t

We discuss trajectory optimization for a class of hybrid systems with a natural, hierarchical separation of
discrete and continuous dynamics, where the continuous dynamics do not change with the discrete state.
The trajectory optimization problem considered requires that a discrete state sequence and a continuous
state trajectory must be both determined to minimize a single cost function, such that the discrete state
sequence also solves a symbolic planning problem.Wemodel this symbolic planning problem as a search
on a planning graph, and we introduce a family of graphs called lifted planning graphs parametrized by an
integer H . We define a family of continuous state trajectory optimization problems and associate them
with edge costs in the lifted planning graphs. Next,wepresent an algorithm for finding an optimal solution
to the hybrid trajectory optimization problem,which includesmapping paths in the lifted planning graphs
to discrete state sequences and continuous state trajectories. We show that the cost of optimal hybrid
trajectories is a nonincreasing function of H , and that there exists a finite H for which this cost attains
a minimum. We illustrate the proposed algorithm with numerical simulation results for two application
examples: an autonomous mobile vehicle and an autonomous robotic manipulator.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The typical topics addressed in the literature on the control
of hybrid dynamical systems include mathematical modeling and
existence of solutions (Goebel, Sanfelice, & Teel, 2012); Lyapunov-
based robust stabilization and switching conditions for stability
(Branicky, 1998; Haddad, Chellaboina, & Nersesov, 2006; Liberzon,
2003; Sanfelice, 2013); abstraction, verification, reachability, and
dead-lock (Alur, Henzinger, Lafferriere, & Pappas, 2000; Tabuada,
2008); and hybrid optimal control, which is the subject of this
paper.

The mode switched system model dominates the literature
on hybrid optimal control. For problems where the mode
switching sequence is fixed, first-order necessary conditions
involving adjoint states, similar to the Pontryagin Minimum Prin-
ciple, are developed (Garavello & Piccoli, 2005; Piccoli, 1998;
Sussmann, 1999). Explicit algorithms and applications for control
design based on such necessary conditions are presented (Pakniyat
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& Caines, 2015a; Shaikh & Caines, 2007). For controlled switch-
ing, the determination of derivatives of the value function with re-
spect to switching times is addressed (Ding, Wardi, & Egerstedt,
2009; Kamgarpour & Tomlin, 2012; Xu & Antsaklis, 2002). Cassan-
dras, Pepyne, and Wardi (2001) address the case where switching
time instants are described by a controlled event-driven dynami-
cal system. Extensions of dynamic programming to hybrid systems
are addressed (Barles, Dharmatti, & Ramaswamy, 2010; Hedlund
& Rantzer, 2002; Rungger & Stursberg, 2011), including connec-
tions to the adjoint variable in the necessary conditions (Pakniyat
& Caines, 2015b), but the fundamental ‘‘curse of dimensionality’’
remains at least as severe as for continuous systems. The deter-
mination of optimal mode selection in systems with autonomous
continuous dynamics is addressed using gradient descent-like al-
gorithms (Axelsson, Wardi, Egerstedt, & Verriest, 2008; Sager,
2009). Zhu and Antsaklis (2013) provide an excellent survey of re-
cent advances.

Hybrid systems involving a natural hierarchy of discrete and
continuous subsystems are not directly addressed by the aforesaid
methods. Such hierarchies arise, for instance, in autonomous
robotics, where the high-level autonomy and intelligence are
modeled by discrete state automata or state transition systems,
and the low-level physical system and its control are modeled by
continuous-time dynamical systems. Similar hierarchies arise in
the chemical process industry (high-level production scheduling
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and low-level process control) and the need for algorithms
for their seamless integration to achieve overall optimality is
emphasized (Engell & Hajunkoski, 2012; Engell, Kowalewski,
Schulz, & Stursberg, 2000). In the optimal control of such
hybrid systems, the discrete state sequence and the continuous
state trajectory must be both determined with the objective of
minimizing a single cost function. Furthermore, the discrete state
sequence is often associated with a symbolic planning problem
(Belta et al., 2007; Bemporad & Giorgetti, 2006). To this end, a
hybrid automatonmodel (Alur et al., 2000) ismore suitable, and the
preservation of the natural hierarchy of the system of engineering
importance (Engell & Hajunkoski, 2012).

We discuss a hierarchical trajectory optimization algorithm
for hybrid control problems involving symbolic planning at the
higher level and continuous state trajectory optimization at the
lower level. We model the symbolic planning problem as a graph
search on a planning graph. Next, we introduce a family of graphs
called lifted planning graphs parametrized by an integer H . Next,
we define a family of low-level trajectory optimization problems
and associate them with edge costs in the lifted planning graphs.
Next, we present an algorithm for finding an optimal solution
to the hybrid trajectory optimization problem, which involves
mapping paths in the lifted planning graphs to discrete-state
sequences and continuous-state trajectories. We show that the
cost of optimal hybrid trajectories is a nonincreasing function of
H , and that there exists a finite H for which this cost attains
a minimum. We illustrate the proposed algorithm with two
examples: an autonomous mobile vehicle, and an autonomous
robotic manipulator.

Contributions: First, we propose a new hybrid trajectory
optimization algorithm for the case where an optimal discrete
state sequence and an optimal continuous state trajectory with
free terminal time must be both simultaneously computed. The
proposed algorithm is applicable to hybrid systems with a natural
hierarchy of discrete and continuous subsystems, where the
continuous dynamics do not change with the discrete state. The
proposed algorithm introduces a loose coupling between the
optimization problems at the two hierarchical levels, without
entirely eliminating the hierarchical problem structure. This
feature is beneficial because the optimization problems at the
two hierarchical levels are typically solved using fundamentally
different methods. Second, we provide important application
examples from robotics that involve a symbolic planning problem
at the higher level, and control for a dynamical system at the lower
level. We demonstrate that the proposed approach produces plans
with significantly lower cost compared to the ad hoc approach
of hierarchical separation. Third, we provide a fundamental result
for hierarchical hybrid systems on the relationship of sequences
of discrete state transitions to costs defined on continuous state
trajectories.

Preliminary results of this paper were previously presented
(Cowlagi, 2015). This paper presents broader theoretical results,
formal proofs, and an additional application example, which were
not previously discussed.

2. Problem formulation

We consider a hybrid dynamical system H with discrete state
in a finite set V , with |V | = NV

∈ Z>0, and continuous state in
an open set D ⊆ Rn. The state of the system is denoted by (v, ξ),
where v ∈ V and ξ ∈ D . We label vertices in V with superscripts,
e.g. v1, v2, . . . , vN

V
whereas we use subscript to denote an index

within a sequence of discrete states. The evolution of the discrete
state is described by a labeled transition system T consisting of a
finite set of labelsΩ , with |Ω| = NL

∈ Z>0, and a transition map
δ : V × Ω → V . We assume that each discrete state v ∈ V is

associated with a compact set Φv ⊆ D , such that for every pair
v1, v2 ∈ V ,
vk ≠ vℓ


⇔


Φvk ∩ Φvℓ = ∅


, k, ℓ ∈ {1, . . . ,NV

}.

The initial state of the system H is denoted by (vs, ξ s), and unless
otherwise stated, we assume that ξ s ∈ Φvs . The evolution of the
continuous state is described by

ξ̇ (t) = f (ξ(t), u(t)) , (1)

where u is the control input and U ∈ Rm is the set of admissible
control input values. The initial time is assumed to be zero. We
denote by U the set of all piecewise continuous functions of time
taking values in U . We assume that f : Rn+m

→ Rn is globally
Lipschitz continuous inRn+m due towhich the global existence and
uniqueness of a solution to (1), denoted ξ(t; ξ s, u), is guaranteed
for all (ξ , u) ∈ U (Haddad & Chellaboina, 2008). Note that jumps
in the continuous state are not permitted.

A plan ω = (ω0, ω1, . . . , ωP−1) is uniquely associated with
a finite sequence of discrete states v = (v0, v1, . . . , vP) such
that δ(vk, ωk) = vk+1 for each k = 0, . . . , P − 1. We make
this association explicit by denoting the plan as ω(v), which is
said to transfer the discrete state from v0 to vP . For a plan ω,
an executive control is a pair (t f, u) such that the control input
u drives the continuous state through each of the regions Φvk in
sequential order in a finite time t f. More precisely, (t f, u) are such
that there exists a strictly increasing sequence {t1, t2, . . . , tP} ∈
0, t f


satisfying tP = t f, and ξ(tk; ξ s, u) ∈ Φvk , for each k =

1, 2, . . . , P . We denote (t f, u) ⊢ ω to indicate that (t f, u) is an
executive control forω. The cost Λ of an executive control (t f, u) is

Λ(t f, u) :=

 tf

0
L(ξ(t; ξ s, u), u(t)) dt, (2)

where L : Rn+m
→ R

+
is a bounded function.

The main problem of interest in this paper as follows.

Problem 1. Let vs, vg ∈ V and ξ s ∈ D be prespecified. Find a
plan ω∗ that transfers the discrete state from vs to vg. Also find
an executive control (t f∗, u∗) ⊢ ω∗ such that, for every plan ω
that achieves the same discrete state transfer, and every executive
control (t f, u) ⊢ ω,

Λ(t f∗, u∗) ≤ Λ(t f, u).

We assume that the discrete state transition system T models a
high-level symbolic planning problem, a specific example of which
is the classical planning problem (CPP) in the artificial intelligence
literature (Russell & Norvig, 2003). A CPP consists of

(1) A finite set of objects {o1, . . . , oN
O
}.

(2) A finite set of predicates {p1, . . . pN
P
}. Each predicate accepts

one or more arguments from the set of objects. A predicate
evaluated for specific object(s) is a literal, which takes values
in {true, false}.

(3) A finite set of CPP states V = {v1, . . . vN
V
}, where each state is

a conjunction of literals, which can take values in {true, false}.
The current CPP state is the unique state that is true. An initial
CPP state vs and a goal CPP state vg are prespecified.

(4) A finite set of actions A = {ω1, . . . ωNL
}. Each action ω ∈ A

is associated with a precondition pre(ω) and an effect eff(ω).
The precondition pre(ω) describes the conditions that must be
true before the action ω can be executed, whereas the effect
eff(ω) describes the changes to the current CPP state, i.e., there
is a unique v ∈ V that is true when eff(ω) is true, denoted by
v ≡ eff(ω).
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