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a b s t r a c t

This paper presents a new approach for control design of constrained linear systems affected by bounded
additive disturbances and polytopic uncertainties. This method hinges on so-called convex liftings which
emulate control Lyapunov function by providing a constructive framework for optimization based control
implementation. It will be shown that this method can guarantee the recursive feasibility and robust
stability. Finally, a numerical example will be presented to illustrate this method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Originated in the seminal work (Lyapunov, 1907), Lyapunov
stability stands as a fundamental concept in control theory (Loría &
Panteley, 2006). In stability analysis, a Lyapunov function is usually
of use to prove closed-loop stability, see Kalman and Bertram
(1960), Brayton and Tong (1979) and Molchanov and Pyatnitskiy
(1989). On the other hand, in control design, control Lyapunov
functions are usually employed to design stabilizing/robust
controllers, see among others (Khalil, 2002; Zubov & Boron, 1964).
Accordingly, whenever such control Lyapunov functions are used
in optimization based strategies, these should be chosen such
that the recursive feasibility and closed-loop stability are all
fulfilled. Different classes of control Lyapunov functions have been
proposed in control theory (Michel, Nam, & Vittal, 1984; Polanski,
1995). In the context of linear quadratic control, infinite/finite
quadratic cost functions usually serve as control Lyapunov
functions, as shown in Anderson and Moore (2007), Chmielewski

✩ The material in this paper was partially presented at the 8th IFAC Symposium
on Robust Control Design, July 8–11, 2015, Bratislava, Slovakia. This paper was
recommended for publication in revised form by Associate Editor Akira Kojima
under the direction of Editor Ian R. Petersen.

E-mail addresses: Ngocanh.Nguyen.rs@gmail.com (N.A. Nguyen),
Sorin.Olaru@centralesupelec.fr (S. Olaru), Pedro.Rodriguez@centralesupelec.fr
(P. Rodríguez-Ayerbe), michal.kvasnica@stuba.sk (M. Kvasnica).
1 Fax: +43 732 2468 6213.

and Manousiouthakis (1996) and Sznaier and Damborg (1987). In
particular, in linear model predictive control (MPC), such a control
Lyapunov function has been used to design robust controllers
to cope with polytopic uncertainties, leading to a linear matrix
inequality problem, see Kothare, Balakrishnan, and Morari (1996).
Polyhedral control Lyapunov functions have also been exploited in
several studies, e.g., Bitsoris (1988b), Bitsoris and Vassilaki (1995),
Blanchini (1994, 1995), Gutman and Cwikel (1987), Lazar (2010)
andVassilaki, Hennet, and Bitsoris (1988), since they lead to simple
design procedures, i.e., composed of linear constraints. Convex
piecewise affine control Lyapunov function for piecewise affine
systems has also been considered in Baotic, Christophersen, and
Morari (2006) and solved using dynamic programming, whichmay
be impractical if disturbances and uncertainties are considered.

It is worth emphasizing that the robust control design proposed
in Kothare et al. (1996) requires at each sampling time solving
a linear matrix inequality (LMI) problem, the online evaluation
thus becomes computationally demanding. Some improvements
of this method are presented in Cuzzola, Geromel, and Morari
(2002) and Wan and Kothare (2003). An effort to simplify this
complexity has been proposed in Kouvaritakis, Rossiter, and
Schuurmans (2000). However, this method can only guarantee
the positive invariance of the initially ellipsoidal feasible set
instead of asymptotic stability of the origin. Also, although the
number of LMIs is decreased, however, solving online an LMI
problem is still expensive in comparison to strict real-time
requirements. Some extensions of the latter method have been
proposed to reduce complexity, e.g., Khan and Rossiter (2012).
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Note however that making use of degree of freedom nc is nothing
other than solving a finite horizon MPC problem. Also, in the
context of MPC, the optimal cost function usually serves as a
Lyapunov function, therefore minimizing a nominal cost function
as in this reference is meaningless, and robust stability is thus
guaranteed by the constraint set. Further, the pre-imposition on
the structure of controllers leads to conservativeness and possible
loss of recursive feasibility. An alternative robust MPC scheme
has been presented in Mayne, Seron, and Raković (2005) to take
bounded additive disturbances into account. However, polytopic
uncertainties considerably increase its computational complexity
with respect to the prediction horizon. As an extension of this
method, parameterized tube MPC has recently been proposed in
Rakovic, Kouvaritakis, Cannon, Panos, and Findeisen (2012) to cope
with bounded additive disturbances. Although implicit controller
is computed based on its decomposed elements, the number of
decision variables is of order O(qN), with q to be the number of
vertices of the given disturbance set and N to be the prediction
horizon. As a consequence, accounting for polytopic uncertainty
makes the online computation much more demanding, as the
number of decision is of order O(qNpN), with p to be the number
of vertices of the given polytopic uncertainty set. Further, dealing
with tube cost function in this case becomes more complicated.

This paper proposes amethodwhich only requires resolution of
a linear programming problemat each sampling instant.Moreover,
unlike the method in Blanchini (1994), which guarantees robust
stability in the sense of Lyapunov (input-to-state stability),
this paper proves a more flexible result by guaranteeing that
the state converges to a given robust positively invariant set
(minimal/maximal robust positively invariant set) as time tends
to infinity. Note that such a constructed convex lifting is not a
control Lyapunov function, which represents a relaxation and a
supplementary degree of freedom with respect to the method in
Blanchini (1994). Finally, to our best knowledge, convex liftings
have never been used in control design and can be a valuable tool,
offering additional flexibility for the existing constrained control
methods.

2. Notation and definitions

Throughout this paper, N, N>0, R, R+ denote the set of
nonnegative integers, the set of positive integers, the set of real
numbers and the set of nonnegative numbers, respectively. For
ease of presentation, with a given N ∈ N>0, by IN , we denote the
index set: IN := {i ∈ N>0 : i ≤ N}. Also, we use I2

N to denote the
set defined as: I2

N = IN × IN .
A polyhedron is the intersection of finitely many closed

halfspaces. A polytope is a bounded polyhedron. If P is an arbitrary
polytope, then by V(P), we denote the set of its vertices. If S is an
arbitrary set, then conv(S) denotes the convex hull of S. Also, we
use dim(S) to denote the dimension of its affine hull. Moreover, if
S is a full-dimensional set, thenwe use int(S) to denote the interior
of S. Given a set S ⊂ Rd and a matrix A ∈ Rd×d, then AS is defined
as follows: AS := {As : s ∈ S}. Also, for any vector x ∈ Rd, ρS(x) is
defined as follows: ρS(x) := miny∈S


(y− x)T (y− x). Given two

sets S1, S2 ⊂ Rd, their Minkowski sum is denoted by S1 ⊕ S2 and
is defined by: S1 ⊕ S2 :=


y1 + y2 ∈ Rd

: y1 ∈ S1, y2 ∈ S2

. Also,

S1 \ S2 is defined as follows: S1 \ S2 :=

x ∈ Rd

: x ∈ S1, x ∉ S2

.

3. Problem settings

In this paper, we consider a discrete-time linear system:

xk+1 = A(k)xk + B(k)uk + wk, (1)

where xk, uk, wk denote the state, control variable and additive
disturbance at time k. The state-space matrices [A(k) B(k)] are

time-varying and assumed to belong to an uncertainty matrix
polytope denoted by Ψ and defined below:
[A(k) B(k)] ∈ Ψ := conv {[A1 B1] , . . . , [AL BL]} . (2)
The state, control variables and disturbances are subject to
constraints:

xk ∈ X ⊂ Rdx , uk ∈ U ⊂ Rdu , wk ∈ W ⊂ Rdx , (3)
where dx, du ∈ N>0, and X, U, W are polytopes containing the
origin in their interior.

The objective is to find robust control lawswhich can copewith
bounded additive disturbances and polytopic model uncertainties
such that the closed loop is robustly stable. It is clear that if wk
is unknown, one cannot expect to guarantee asymptotic stability
of the origin. In this case, asymptotic stability is replaced with an
ultimate boundedness concept (Khalil, 2002; Kofman, Haimovich,
& Seron, 2007) or input to state stability (Jiang & Wang, 2001).

4. Robust control design based on convex liftings

4.1. Robust positively invariant sets

Positively invariant sets have been studied over several
decades. Due to their relevance in control theory, they turn out to
be useful in many control related studies, e.g., Bitsoris (1988a,b),
Bitsoris and Vassilaki (1995), Blanchini and Miani (2007) and
Kerrigan (2001). The definition of a robust positively invariant set
for system (1) is recalled below.

Definition 4.1. Given an admissible control law uk = Kxk ∈ U, a
set Ω ⊆ X is called robust positively invariant with respect to (1) if

(A(k)+ B(k)K)Ω ⊕W ⊆ Ω, ∀ [A(k) B(k)] ∈ Ψ ,

where Ψ is defined in (2).

To compute such a robust positively invariant setΩ , it is important
to choose an appropriate unconstrained control law to cope with
given bounded additive disturbances and polytopic uncertainties.
More clearly, this control law should satisfy that there exists a
Lyapunov function V (x) : Rdx → R+ such that
V ((A(k)+ B(k)K)xk)− V (xk) < 0, ∀ [A(k) B(k)] ∈ Ψ .

The computation of such a gain K was studied in, e.g., Daafouz and
Bernussou (2001) and Kothare et al. (1996). A simpler formulation
is presented below:
min
Z,Y
−logdet(Z)

subject to
Z = ZT > 0

Z (AiZ + BiY )T

AiZ + BiY Z


> 0, ∀ i ∈ IL.

Then, gain K is determined by K = YZ−1. It is already known that
the above formulation is an LMI problem and is solvable by using
semidefinite programming. The interested reader can find details
in Boyd, El Ghaoui, Feron, and Balakrishnan (1994).

With respect to the state feedback uk = Kxk, the computation
of a robust positively invariant set Ω for system (1) has been
put forward in Nguyen (2014), as a simple extension of the idea
presented in Gilbert and Tan (1991). Note also that prominent
studies on the computation of themaximal andminimal positively
invariant sets for a linear, discrete-time invariant system affected
by bounded additive disturbances can be found in Kolmanovsky
and Gilbert (1998) and Rakovic, Kerrigan, Kouramas, and Mayne
(2005). Still, in the case system (1) is not affected by additive
disturbances, then the minimal robust positively invariant set
coincides with the origin due to its asymptotic stability, i.e., Ω =
{0}. Without loss of generality, we are hereafter interested in the
case Ω ⊆ X ⊂ Rdx represents a full-dimensional set.
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