
Automatica 77 (2017) 239–245

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Stabilization of bilinear sparse matrix control systems using
periodic inputs✩

Bahman Gharesifard
Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada

a r t i c l e i n f o

Article history:
Received 14 May 2015
Received in revised form
1 October 2016
Accepted 26 October 2016

Keywords:
Network control systems
Decentralized control
Sparse matrix systems

a b s t r a c t

In this brief paper, using results from the theory of averaging of bilinear systems, we provide a graph
theoretic characterization for the existence of periodic control inputs that stabilize a sparsematrix system
to the origin. In particular, we introduce a class of extensions to the directed graph corresponding to a
given sparse matrix system, which when contains a stable sparse matrix system implies that the original
system is stabilizable using periodic inputs.When this condition holds,we provide a systematic procedure
for designing such controllers. Our technical approach combines ideas from the theory of bilinear control
systems and averaging theory with graph theoretic results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the increase of interest in large-scale systems intercon-
nected over networks and influenced by feedbacks, there has been
a surge of activities within the control community for understand-
ing the stability and controllability properties of these systems, see
for example (Aguilar & Gharesifard, 2015; Langbort, Chandra, &
D’Andrea, 2004; Lin, 1974; Rahmani, Ji,Mesbahi, & Egerstedt, 2009;
Reinschke, 1988; Rotkowitz & Lall, 2006; Tanner, 2004). Most of
the recent effort has been devoted to linear networked control sys-
tems, as they reveal valuable information about the linearization
of general networked control systems. On the stabilizability front,
which is the main focus of this paper, the interesting recent work
(Belabbas, 2013) investigates the limitations imposed by the topol-
ogy of interconnections in linear networked control systemsvia the
notion of (stable) sparse matrix spaces (SMSs).

As demonstrated in Belabbas (2013), one can associate a di-
rected graph to a sparse matrix system, where the directed out-
going edges from a vertex show which subsystems influence this
vertex’s dynamics. The weights on these edges are free design pa-
rameter. It is shown that the topology of this directed graph, for
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example the existence of Hamiltonian subdigraphs, provides nec-
essary/sufficient conditions for the existence of a choice for the
free parameters that stabilizes this sparse matrix system to the
origin. One, however, might still wonder if it is possible to use
some control inputs that change the values of the free parame-
ters on the edges over time and allow us to achieve the asymp-
totic stability to the origin, when such necessary conditions fail to
hold. In fact, in many scenarios of complex systems, the external
inputs can be coupled with the interconnections among the sub-
systems (Williamson, 1977). Bilinear control systems capture the
simplest form of such couplings, and yet still model many prac-
tical scenarios, for example chemical and microbial cell-growth
model (Williamson, 1977). Moreover, as noted recently (Ghosh &
Ruths, 2014), changing the intensity of interconnections between
the subsystems of a complex system can provide tools for con-
trolling their evolutions. The controllability and stabilizability of
bilinear systems are well-studied topics (Brockett, 1972a,b, 1973;
d’Alessandro, Isidori, & Ruberti, 1974; Elliott, 2009; Piechottka &
Frank, 1992), and yet there are still many open questions about
their most basic controllability properties, see Elliott (2009), Ornik
(2013) and references therein.

Having this in mind and motivated by Baillieul (1995), in this
brief paperwe study the stabilization of bilinear sparsematrix con-
trol systems by periodic control inputs on a few edges. The idea be-
hind using periodic control inputs goes back to classical topics on
periodic averaging in dynamical systems, where under appropri-
ate conditions, the asymptotic stability properties of the averaged
flow can reveal valuable information about the domain of attrac-
tion of the original flow (Bogoliubov &Mitropolsky, 1961; Sanders
& Verhulst, 1985; Teel, Peuteman, & Aeyels, 1999). Interestingly,
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for bilinear control systems, as shown in Baillieul (1995) in the con-
text of energy shaping of mechanical systems, periodic inputs can
create new control directions. More importantly, under restrictive
assumptions, when the averaged dynamics is stable, there exists
periodic control inputs with high enough frequency that stabilizes
the original bilinear system to the origin. One of themain objective
of this brief note is to demonstrate that, in spite of the restrictions
imposed in Baillieul (1995), there is a large class of sparse matrix
systems which are not stable, i.e., there exists no choice of con-
stant values for the free parameterswhichmake it Hurwitz, but are
stabilizable using periodic inputs, influencing the intensity of in-
terconnections on only a few edges. In particular, using thematch-
ing of the original directed graph, we characterize a class of
extensions to a given sparse matrix system and if one of these ex-
tensions is a stable sparse matrix system, the original system can
be stabilized to the origin using periodic inputs on a selected num-
ber of edges.We also give a systematic way for finding appropriate
control edges and designing the corresponding periodic inputs on
them. Various examples demonstrate our results.

1.1. Organization

After introducing somemathematical preliminaries, we formu-
late the problem statement in Section 2. In Section 3, after recalling
some notions from bilinear control and averaging, we define some
graph theoretic notions along with some elementary key results
that characterize the edges selected to be controlled by periodic
inputs. Section 4 contains our main result on sufficient conditions
for stabilization of sparse matrix systems by periodic inputs. We
also introduce a procedure for designing such controls, anddemon-
strate our results by various examples. Section 5 gathers our con-
clusions and ideas for future work.

1.2. Notations and mathematical preliminaries

We denote the set of real numbers and positive integers,
respectively, by R and Z≥1. For a vector x ∈ Rn, where n ∈ Z≥1,
with components xi ∈ R, i ∈ {1, . . . , n}, we use the norm ∥x∥ =n

i=1 |xi|. The set of all n × nmatrices is denoted by Rn×n.
We recall some basic notions of graph theory from Bondy and

Murty (2008). A directed graph, or simply digraph, is a pair G =

(V , E), where V is a finite set called the vertex set and E ⊆ V × V
is the edge set. IfV has n elements,we say thatG is of order nwhich,
unless otherwise noted, is the standard assumption throughout
the paper. We can associate an adjacency matrix A ∈ Rn×n to G,
which has the property that the entry aij ≠ 0, i, j ∈ {1, . . . , n},
if (vi, vj) ∈ E and aij = 0, otherwise. We say that G = (V , E)
is undirected, or simply graph if E consists of unordered pairs of
vertices. Given an edge (u, v) ∈ E , we call u the tail and v
is called the head. We say that u an in-neighbor of v and v an
out-neighbor of u; for an undirected graph, we simply say that u
and v are neighbors. Given an undirected graph G = (V , E), two
edges (u1, v1) ∈ E and (u2, v2) are called adjacent if they have
a vertex in common. A matching for an undirected graph is a set
of pairwise nonadjacent edges. For a directed graph, a matching
is matching of its underlying undirected graph, i.e., the graph with
the same number of vertices obtained by turning any directed edge
to an undirected one.

A digraph G1 = (V1, E1), where E1 ⊆ V1 × V1, is a subdigraph
(denoted by G1 ⊂ G) of G = (V , E) if V1 ⊂ V and E1 ⊂ E .
Two subdigraphs G1, G2 ⊂ G are disjoint if they have no vertex
in common. We say that G1 . . . , Gm is a (vertex) decomposition of
G if they are pairwise disjoint and their union is G. A directed
path in a digraph, or in short path, is an ordered sequence of
vertices so that any two consecutive vertices in the sequence are
an edge of the digraph. A cycle in a digraph is a directed path

Fig. 1. The digraph associated to the sparse matrix system (1).

that starts and ends at the same vertex and has no other repeated
vertex. The notion of a Hamiltonian subdigraph, which we recall
from Belabbas (2013), plays an important role in this paper. A
Hamiltonian cycle is a cycle that visits every vertex exactly once.
A Hamiltonian (vertex) decomposition of G is a decomposition
of G into disjoint subdigraphs, where each subdigraph admits a
Hamiltonian cycle. A Hamiltonian subdigraph is a subdigraph of G
that admits a Hamiltonian decomposition. Finally, a Hamiltonian
k-subdigraph is a Hamiltonian subdigraph with k ∈ Z≥1 vertices.

2. Problem statement

Consider the vector space of matrices Σα in Rn×n, where α ⊂

{1, . . . , n}×{1, . . . , n}, and all entries not inα are forced to be zero.
We refer to such vectors spaces as the sparse matrix systems (or
sparse matrix spaces as in Belabbas, 2013), where the term system
here refers to the linear system of differential equations that can
be assigned to a given matrix in Σα , c.f. (2). We shall say that Σα is
a stable sparse matrix system if Σα contains a Hurwitz matrix. We
next provide an example to motivate the problem under study in
this paper.

Let Σα ⊂ R5×5 be the sparse matrix system given by

Σα =


⋆ ⋆ 0 0 ⋆
0 0 ⋆ 0 0
⋆ 0 0 ⋆ 0
0 0 0 0 ⋆
⋆ 0 0 ⋆ 0

 , (1)

where the free parameters in α are denoted by ⋆s. As shown in
Belabbas (2013, Section 2.2), Σα given by (1) is not a stable sparse
matrix system, because its corresponding digraph shown in Fig. 1,
where edges correspond to the free parameters, does not satisfy
the necessary conditions for stability of sparse matrix systems
(Belabbas, 2013, Theorem 2); let us recall this result, as we will be
referring to this frequently throughout this note.

Theorem 1 (Belabbas, 2013). A sparse matrix system is stable only if
its associated digraph contains aHamiltonian k-subdigraph, for all k ∈

{1, . . . , n}. Moreover, if the associated digraph G contains a sequence
of nested Hamiltonian subdigraphs G1 ⊂ G2 . . . ⊂ Gn−1 ⊂ G then it
is stable.

In particular, the digraph shown in Fig. 1 does not contain a
Hamiltonian 4-subdigraph and hence Σα is not stable, i.e., there
exists no choice of real numbers for the values of the free
parameters that makes the system

ẋ(t) = Aαx(t), (2)

where Aα ∈ Σα and x(t) ∈ Rn, for t ≥ 0, globally asymptotically
stable to the origin (where n = 5 for this example). One, however,
might still wonder if it is possible to use some control inputs that
change the values of the free parameters on some of the edges over
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