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a b s t r a c t

In this paper we present a novel algorithm for identifying continuous-time autoregressive moving-
average models utilizing irregularly sampled data. The proposed algorithm is based on the expec-
tation–maximization algorithm and obtains maximum-likelihood estimates. The proposed algorithm
shows a fast convergence rate, good robustness to initial values, and desirable estimation accuracy. Com-
parisons are made with other algorithms in the literature via numerical examples.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of stochastic continuous-time (CT) models utiliz-
ing sampled data has been a recurring topic in different areas of
research such as: System Identification, Time Series Analysis, and
Econometrics (see e.g. Bergstrom, 1988, Elerian, 2008, Sinha & Rao,
1991, Tsai & Chan, 2005 and the references therein).

There are two approaches to identify stochastic continuous-
time models (Larsson, Mossberg, & Söderström, 2008)

• Indirect approach: where an equivalent discrete-time (DT)
model is identified and then transformed to the underlying
continuous-time model. This approach has the advantage that
well-established discrete-time identification methods can be
utilized. It is well known that provided that the sampling
interval is sufficiently small, then the mapping from a linear
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discrete-time model to the linear continuous-time model is
one-to-one (Ding, Qiu, & Chen, 2009). On the other hand, the
indirect approach cannot be directly used for irregular sampling
since the equivalent discrete-time model is time-variant.

• Direct approach: where the continuous-time model is directly
identified. Several direct identification methods utilize some
approximations for the signal derivatives with respect to
time. The estimates obtained by this approach are typically
biased with a bias proportional to the sampling interval, see
e.g. Larsson et al. (2008).

In many modern systems one can use much faster sampling
rates than were previously possible (Goodwin, Agüero, Cea-
Garrido, Salgado, & Yuz, 2013). In this case, one can develop
identification algorithms utilizing the discrete-timemodel (similar
to the indirect approach), but the continuous-time model is
directly obtained by utilizing a re-parametrization of the system
in terms of the delta-operator (see Goodwin et al., 2013 for
details). An identification method for continuous-time models
written in the state-space form utilizing data obtained by using
fast sampling has been recently presented in Yuz, Alfaro, Agüero,
and Goodwin (2011). The results in this paper have been extended
in Aguilera, Godoy, Agüero, Goodwin, and Yuz (2014) in order
to identify models in a class of hybrid systems where the state-
space matrices are time-variant. On the other hand, in Chen,
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Garnier, Gilson, Agüero, and Godoy (2014) we have developed
an algorithm to identify continuous-time autoregressive moving-
average (CARMA) models utilizing data obtained by using fast
sampling.

In this paper, we propose a method that extends the results
in Aguilera et al. (2014), Chen et al. (2014) and Yuz et al. (2011)
in order to consider CARMA models when slow sampling rates
(compared to the system bandwidth) are utilized. Note that the
aforementioned methods in Aguilera et al. (2014) and Yuz et al.
(2011) cannot be directly applied to a CARMA model since it has a
noise-free output equation when written in the state-space form.

1.1. Notation

xi(tk) is the ith component of the state vector x(tk). θi is the
ith component of the vector of parameters θ. θ̂r represents the rth
iteration corresponding to an iterative estimation procedure (e.g.
Newton-based, or expectation–maximization-based optimization
algorithms) to estimate a vector of parameters θ. Fk represents the
exponential matrix obtained when irregular sampling is utilized,
i.e. Fk = exp{A(tk+1 − tk)}. Ḟk,i represents the derivative of the ma-
trix Fk with respect to the ith component of the vector θ, i.e. Ḟk,i =
∂Fk
∂θi

. Q̇k,i and Ṙk,i are similarly defined. The set of data collected from
time t1 to time tk is denoted by Yk = {y(t1), . . . , y(tk)}. The set of
states Xk is similarly defined, i.e. Xk = {x(t1), . . . , x(tk)}. |A| de-
notes the determinant of the matrix A.

1.2. Statement of the problem

In this paper we focus on the identification of CARMA models
given by

D(s)y(t) = C(s)e(t) (1)

where e(t) is zeromean continuous-timewhite noise (CTWN)with
spectral power E{e2(t)} = σ 2 assumed to be Gaussian. Note that
CTWN has infinite variance and therefore remains a mathematical
conjecture in the literature, a formal description is provided via the
Wiener process, the interested reader is referred to e.g. Øksendal
(2003) for more details on this topic. D(s) and C(s) are polynomi-
als in the Laplace operator s

D(s) = sn + d1sn−1
+ · · · + dn (2)

C(s) = c0sm + c1sm−1
· · · + cm (3)

where n and m are the degrees of D(s) and C(s), respectively. To
ensure that y(t)has finite variancewe let n > m. Since {c0, . . . , cm}

can represent the gain of the system, the spectral power of e(t) is
fixed as a constant (σ 2

= 1). It is assumed that samples of y(t) are
collected irregularly at {t1, t2, . . . , tN}, and hk = tk+1 − tk denotes
the irregular sampling interval. The identification objective is to
estimate the unknown model parameters {d1, . . . , dn, c0, . . . , cm}

from the irregularly sampled data YN = {y(t1), . . . , y(tN)}.
The layout of the remainder of the paper is as follows.

In Section 2 we present the system of interest in the state-
space form. In Section 3 we discuss relevant issues regarding
maximum-likelihood estimation of CARMA model parameters
utilizing irregular sampling. An identification method based on
the expectation–maximization algorithm is developed in Section 4.
Numerical examples are shown in Section 5 to illustrate the
benefits of the proposed method. Finally, in Section 6, we draw
conclusions.

2. State-space equivalent model

It is well known that the model in (1) can also be represented
in the state-space form Gevers (2006)

ẋ(t) = Ax(t) + Ke(t) (4)
y(t) = Cx(t). (5)

In addition, the sampled-datamodel corresponding to (4)–(5) with
samples taken at {t1, t2, . . . , tN} is given by Söderström (2002)

x(tk+1) = Fkx(tk) + w(tk) (6)
y(tk) = Cx(tk) (7)

where Fk = exp{A(tk+1 − tk)}, w(tk) is zero mean DT white noise
with covariance matrix given by

Qk = E{w(tk)wT (tk)}

=

 hk

0
exp{Aτ }KK T exp{AT τ }dτ (8)

where hk = tk+1 − tk. Then, the DT stochastic process {y(tk)} has
the same second order properties as {y(t)} at the sampling instants
{t1, . . . , tN}. The initial state x(t1) is assumed to have a normal
distribution x(t1) ∼ N (µ1, P1).

Note that KK T is singular. However, the covariance matrix Qk
is generally non-singular (Söderström, 2002, p. 88). In fact, the
matrix Qk is non-singular for any value of hk if the pair [−A, K ] is
controllable (Wolowich, 1974, p. 66).

Several identification algorithms for continuous-time au-
toregressive (CAR), continuous-time autoregressive exogenous
(CARX), and CARMA models utilize the state-space model in
(4)–(5). For example in Larsson, Mossberg, and Söderström (2007)
an observable canonical form is utilized to obtain the Cramer–Rao
lower bound corresponding to the estimates of a CARX process
where the exogenous signal is considered as the output of a CARMA
model.

In this paper we propose to use a general parametrization for
the state-spacematrices A = A(θ), K = K(θ), C = [1 0 · · · 0]. This
parametrization not only covers the matrices corresponding to
traditional canonical forms but also covers the fully parametrized
matrices A and K . As suggested in McKelvey and Helmersson
(1996), one should use an over-parametrized state-space model
in order to overcome the numerical issues that arise when using
canonical parametrizations in an optimization-based estimation
algorithm. In addition, over-parametrized state-space matrices
have been utilized in Agüero, Tang, Yuz, Delgado, and Goodwin
(2012), Gibson and Ninness (2005) and Yuz et al. (2011). Note that
in the parametrization utilized in this paper, the matrix C does not
contain parameters to be estimated. This choice will become clear
once the proposed method is presented in Section 4.

3. Maximum-likelihood estimation

In maximum-likelihood (ML) estimation, the log-likelihood
function is defined to be the logarithm of the probability density
function of output observations parametrized with a vector of
parameters θ, i.e.

l(θ) = log p (YN |θ) . (9)

The ML estimate of θ is defined as the solution of the following
optimization problem

θ̂ = argmax
θ

l(θ). (10)

It is well known that the value of the log-likelihood function
(hereafter shortened as likelihood function) can be computed by
prediction error decomposition via the Kalman filter (Agüero et al.,
2012; Ljung, 1999; Söderström & Stoica, 1989)

l(θ) = −
1
2

N
k=1

ϵT
k Λ−1

k ϵk −
1
2

N
k=1

log |Λk| (11)
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