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a b s t r a c t

In order to estimate states from a noise-driven state space system, the state estimator requires a priori
knowledge of both process and output noise covariances. Unfortunately, noise statistics are usually
unknown andhave to be determined fromoutputmeasurements. Current expectationmaximization (EM)
based algorithms for estimating noise covariances for nonlinear systems assume the number of additive
process and output noise signals are the same as the number of states and outputs, respectively. However,
in some applications, the number of additive process noises could be less than the number of states. In
this paper, a more general nonlinear system is considered by allowing the number of process and output
noises to be smaller or equal to the number of states and outputs, respectively. In order to estimate noise
covariances, a semi-definite programming solver is applied, since an analytical solution is no longer easy
to obtain. The expectation step in current EMalgorithms rely on state estimates from the extendedKalman
filter (EKF) or smoother. However, the instability and divergence problems of the EKF could cause the
EM algorithm to converge to a local optimum that is far away from true values. We use moving horizon
estimation instead of the EKF/smoother so that the accuracy of the covariance estimation in nonlinear
systems can be significantly improved.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For noise-driven state space systems, the performance of state
estimation depends on properly defined noise statistics. Any
guessed or inappropriately determined noise statistics may result
in inaccuracies or even a divergence of state estimates. The pio-
neering work in Mehra (1972) introduced the innovation correla-
tion and the maximum likelihood estimation (MLE) methods for
identifying the noise covariance.

The innovation correlation method is based on establishing an
explicit relation between the noise covariance and the correlation
of the innovation sequence. One of the algorithms for linear time
invariant (LTI) systems is the auto-covariance least squares (ALS)
method introduced in Rajamani and Rawlings (2009), in which
the noise covariances are estimated by solving one semi-definite
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linear least squares problem. The ALS method was then extended
to linear time-varying (LTV) as well as nonlinear systems in Ge and
Kerrigan (2014) and Rajamani and Rawlings (2007).

As an alternative approach, MLE aims to maximize the
likelihood of the noise covariance given the output measurement
sequence. An MLE-based ‘‘one-off’’ and an EM-based recursive
algorithm for estimating noise covariances in LTI and LTV systems
are presented in Zagrobelny and Rawlings (2015) and Shumway
and Stoffer (1982), respectively. The EM method was first
introduced in Dempster, Laird, and Rubin (1977) andwas extended
to nonlinear systems in Bavdekar, Deshpande, and Patwardhan
(2011) by using the extended Kalman filter (EKF) and Kalman
smoother combined with the EM method.

In this paper, we consider more general nonlinear systems than
(Bavdekar et al., 2011) by allowing the number of process and
output noises to be smaller or equal to the number of states and
outputs, respectively. In ourmethod, the noise covariancematrices
are estimated using a semi-definite programming (SDP) solver, in
order to ensure estimated noise covariances are positive definite.
The EM algorithm is combined with moving horizon estimation
(MHE) and full information estimation (FIE) (Rawlings & Mayne,
2009) to estimate noise covariances for nonlinear systems. The
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first reason for using MHE/FIE, rather than other Kalman-based
filters, is to reduce the possibility of instability and divergence of
estimated states. The second reason is that MHE/FIE allows one
to add constraints, which could improve the accuracy of state
estimation, if there exists physical limits or algebraic constraints
on system states.

This paper is organized as follows: Sections 2 and 3 introduce
the theory of covariance estimation using the EM algorithm
combined with MHE/FIE for nonlinear systems. Two numerical
examples are given in Section 4. We draw conclusions in Section 5.

E{X |Y } and C{X |Y } denote the conditional expected value and
covariance of a random variable X given Y , respectively. L(·)
and Lℓ(·) denote the likelihood and log-likelihood function of
parameters of a statistical model, respectively. (·)Ď denotes the
Moore–Penrose generalized inverse of a matrix. δ(x − m) is the
Dirac delta function with delay m. M r,c

l denotes an r × c auxiliary
matrix that

M
r,c
l :=


0r×(l−1) Ir 0r×(c−r−l+1)


.

|·| and log |·| denotes the determinant and log-determinant of a
square matrix, respectively. J (·) denotes the Jacobian matrix of
a vector-valued function. ∥ · ∥F is the Frobenius norm of a matrix.
P ≻ 0 denotes that P is a positive-definite symmetricmatrix; ∥x∥2W
is weighted least squares of vector x, which equals to x⊤Wx. tr(A)
represents the trace of a square matrix A. The symbol := is to be
read as ‘is defined as’, while=: is to be read as ‘defines’.

2. Noise covariance estimation using the EM algorithm

Consider a discrete-time nonlinear state space model:

xk+1 := f (xk)+ Gkwk
yk := h(xk)+ Hkvk

(1)

where xk ∈ Xk is the unknown state, yk ∈ ℜp is the output
measurement. Gk ∈ ℜ

n×r and Hk ∈ ℜ
p×q are two full column

rank time-varying matrices in order to ensure the uniqueness of
the conditional densities p(xk+1|xk) and p(yk|xk) to be defined later.
wk and vk are two unknown noise terms, which affect the state and
output, respectively.

Assumption 1. The noise sequences (wk)
M
k=1 and (vk)

M
k=1 are

two random variables having Gaussian (or normal) distributions
N (0,Q ) and N (0, R), respectively, with zero mean and unknown
positive-definite covariance matrices Q and R.

Assumption 2. The probability distribution p(x1) of the initial
state has Gaussian distribution p(x1) ∼ N


x̃1, P1


, where x̃1 is

the a priorimost likely value of x1 and P1 is the corresponding error
covariance.

Assumption 3. Functions f (·) and h(·) are twice differentiable.
The discrete-time nonlinear model (1) is uniformly observable
(Moraal & Grizzle, 1995) and there exists a stable state observer
for (1) with nonempty feasible region.

Define the full output and state sequence to be YM := (yk)Mk=1
and XM := (xk)Mk=1, respectively. If YM and initial guesses of x̃1,
P1, Q and R are all given, the set of true system parameters O :=

{x̃1, P1,Q , R} can be recursively estimated using the expectation
maximization (EM) method (Shumway & Stoffer, 1982).

Let the estimate of x̃1 and covariancematrices P1, Q and R at the
ith iteration be

Oi :=

x̃1,i, P1,i,Qi, Ri


, i = 1, . . . ,N,

where N ≫ 1 is the maximum number of iterations. The
EM method recursively maximizes the expectation of the log-
likelihood function Oi → Lℓ (Oi|YM), until the log-likelihood
function converges to its maximum value (Dempster et al., 1977).

The expression of O → Lℓ (O|YM) is given by

Lℓ (O|YM) = log (p(YM |O)) = log

p(XM , YM |O)

p(XM |YM , O)


= log (p(XM , YM |O))− log (p(XM |YM , O)) . (2)

Taking the conditional expectation on both sides of (2) given YM
and Oi−1, we get the expectation of the log-likelihood function
Lℓ (O|YM), i.e.

E{log(p(YM |O))|YM , Oi−1} = Q(O|Oi−1)−H(O|Oi−1),

where Q and H are given by

Q(O|Oi−1) := E{log(p(XM , YM |O))|YM , Oi−1}, (3a)
H(O|Oi−1) := E{log(p(XM |YM , O))|YM , Oi−1}. (3b)

Because YM is a given measurement sequence,

E{log(p(YM |O))|YM , Oi−1} = Lℓ(O|YM).

Theorem 4 (Dempster et al., 1977; Jeff Wu, 1983). For the EM
algorithm, the value of Lℓ (Oi|YM) will monotonically increase at
each iteration and converge to the maximum if

Q(Oi|Oi−1) ≥ Q(Oi−1|Oi−1), ∀i, (4)

with equality if and only if Oi = Oi−1.

Theorem 4 simplifies calculation, so that we only need to focus
on fulfilling (4) by maximizing Q(O|Oi−1), instead of Lℓ(·|YM).
Before giving the expression of Q, we start with the expression of
log(p(XM , YM |O)) in (3a).

Lemma 5. Consider two random vectors w, x and let x = m + Gw,
where m ∈ ℜn,1, G ∈ ℜn,r and n > r. If G is a full column rank
matrix,w ∼ N (0,Q ) and Q ≻ 0, then the probability distribution of
x is given by

p(x) ∝
1

√
(2π)r |W |

e−
1
2 ∥S(x−m)∥2

W−1 ,

where W ≻ 0 and S is a constant matrix.

Proof. Because G is a full column rank matrix, random vector
x has a singular joint normal distribution, such that p(x) ∼
N


0,GQG⊤


, where GQG⊤ ≽ 0. By using the singular value

decomposition, we have

GQG⊤ = UPU⊤ = U

Q̃ 0
0 0


U⊤,

where Q̃ ∈ ℜr is a nonsingular matrix, U is a unitary matrix, such
that U−1 = U⊤. Define a new random vector z, such that

z :=

z⊤1 z⊤2

⊤
= U−1x = U−1Gw,

where z1 ∈ ℜr×1. Since z ∼ N (U−1m, P), by definition
of the singular joint normal distribution (Graham & Rawlings,
2013, pp. 376–377),

p(z) =
δ(z2 −M

n−r,n
r+1 U−1m)

(2π)r |Q̃ |
e
−

1
2 ∥z1−M

r,n
1 U−1m∥2

Q̃−1 .

Because δ(z2 − M
n−r,n
r+1 U−1m) is the probability mass function of

the degenerate variable z2, we have

p(z) ∝
1

(2π)r |Q̃ |
e
−

1
2 ∥z1−M

r,n
1 U−1m∥2

Q̃−1 .
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