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a b s t r a c t

This paper investigates the problem of global stabilization by partial state feedback for a class of cascade
nonlinear systems with time-delay. Under suitable ISS conditions imposed on zero-dynamics, a delay-
free, dynamic partial state feedback compensator is presented for achieving global state regulation. The
controller is constructed by employing a dynamic gain based design method, together with the ideas
of changing supply rates and adding an integrator. With appropriate choices of Lyapunov–Krasovskii
functionals, it is shown that all the states of the time-delay cascade system can be regulated to the
origin while maintaining boundedness of the closed-loop system. Two examples are given to illustrate
the effectiveness of the proposed dynamic partial state feedback control scheme.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a cascade system with time-delay of the form

żi = f0i(z1, . . . , zi, z1(t − d), . . . , zi(t − d),
x1, . . . , xi, x1(t − d), . . . , xi(t − d)),

ẋi = xi+1 + gi(z1, . . . , zi, z1(t − d), . . . , zi(t − d),
x1, . . . , xi, x1(t − d), . . . , xi(t − d)),

zi(s) = ζi(s), x(s) = µ(s), s ∈ [−d, 0],
i = 1, . . . , r, (1)

where zi ∈ Rni(ni = 0, 1, 2, . . .) and x = [x1, . . . , xr ]T ∈ Rr(r ≥

1) are the system states, u := xr+1 ∈ R is the control input, and
the constant d ≥ 0 is an unknown time-delay of the system. For
i = 1, . . . , r , f0i : R2n1+···+2ni+2i

→ Rni and gi : R2n1+···+2ni+2i
→ R

are C1 mappings with f0i(0) = 0 and gi(0) = 0, and ζi(s) ∈ Rni and
µ(s) ∈ Rr are continuous functions defined on [−d, 0]. Notably,
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dim z = dim [z1, . . . , zr ]T = n1 + n2 + · · · + nr with ni ≥ 0,
which can be either less or bigger than, or equal to dim x = r .
Throughout this paper, it is assumed that only the partial state of
the cascade system (1), namely, x = [x1, . . . , xr ]T , is measurable
and available for feedback design.

Without the time-delay, partial state feedback control of the
cascade nonlinear system (1) has been studied in the literature;
see, for instance, Chen (2009), Chen and Huang (2004), Jiang and
Mareels (1997), Lin and Gong (2003), Lin and Pongvuthithum
(2002) and the references therein. In the casewhen only z1 appears
in the cascade system (1), the problem of global stabilization
was considered in Isidori (1999), Jiang and Mareels (1997), Lin
and Gong (2003) and Lin and Pongvuthithum (2002) by using a
nonlinear small-gain theorem, and the idea of changing supply
rate combined with the backstepping design. In Chen (2009) and
Chen and Huang (2004), global stabilization of the more general
cascade system such as (1) without time-delay was shown to be
possible by using a Lyapunov direct method. It was shown in Chen
and Huang (2004) that the states (z1, . . . , zr), which model the
dynamic uncertainty, represent the internal model of the cascade
system when studying the robust output regulation of lower-
triangular systems. Thework (Chen, 2009) also provided an explicit
construction of a Lyapunov function in superposition form for the
cascade nonlinear system.

Time-delay is frequently encountered in various engineering
systems and often causes instability. For time-delay systems,many
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results have been obtained and reported in the literature (Bekiaris-
Liberis & Krstic, 2013; Bresch-Pietri & Krstic, 2014; Fridman &
Shaked, 2002; Gu, Kharitonov, & Chen, 2003; Krstic, 2010; Pepe,
2014; Richard, 2003). In Krstic (2010), it was pointed out thatmany
systems such as feedback linearizable or strict-feedback systems
with input delay are not globally stabilizable because they are not
forward complete. With this observation, the work (Krstic, 2010)
focused on the problem of input delay compensation for forward
complete and strict-feedforward systems. It has led subsequent
developments; see, for instance, the papers Bekiaris-Liberis and
Krstic (2013); Bresch-Pietri and Krstic (2014) and references
therein. By comparison, little effort has been made for the control
of the cascade nonlinear system (1) with time-delay. Even in
the case when the nonlinear system (1) contains no dynamic
uncertainty zi, the stabilization problem is still a difficult one as
shown in Jankovic (2001), Karafyllis and Jiang (2010), Mazenc,
Mondie, and Niculescu (2003), Zhang and Lin (2014). Following
the work Chen (2009), we study in this paper the problem of
how to control the time-delay nonlinear cascade system (1) by
delay-independent, partial state feedback. As indicated inChen and
Huang (2004), even without delay, there is a connection between
the solvability of the global output regulation problem and the
global stabilizability of cascade nonlinear systems by partial state
feedback. Therefore, the study of the cascade system (1)with time-
delay is likely to provide a new insight in understanding the global
output regulation of time-delay nonlinear systems andmay pave a
way to solve the global output regulation problem.

The main contribution of this paper is to prove that the
global state regulation problem of the time-delay cascade system
(1) is solvable by a delay-free, dynamic partial state feedback
compensator if appropriate ISS conditions imposed on zero-
dynamics are fulfilled. Specifically, we apply the idea from
Zhang and Lin (2014), Zhang, Lin, and Lin (2016) to design a
delay-independent, partial state feedback controller with dynamic
gains that are updated by Riccati-like equations. The constructed
dynamic partial state feedback compensator can globally regulate
all the states of the time-delay cascade nonlinear system (1) to the
origin while maintaining the boundedness of the resulted closed-
loop system. The novelty lies in the development of a dynamic
partial state feedback control strategy based on the backstepping
design and changing supply rates, capable of counteracting the
time-delay nonlinearities of the cascade system (1). The delay-
free, dynamic partial state compensator is then designed in a
recursive manner. Another new ingredient is the construction
of Lyapunov–Krasovskii functionals that relies on dynamic gains,
which play a crucial role in proving the global stability as well as
the global state regulation of the cascade nonlinear system with
time-delay.
Notations: Throughout this paper, we let vd denote the time-delay
term v(t−d), for example, zid = zi(t−d) and xid = xi(t−d). Define
v̄i = [v1, . . . , vi]

T
∈ Ri for i = 1, . . . , r . Hence, x̄i = [x1, . . . , xi]T ,

x̄id = [x1d, . . . , xid]T and l̄i = [l1, . . . , li]T .

2. Preliminaries

In this section, we collect some technical lemmas to be used
in the sequel. The lemmas listed below play an important role in
the design of a dynamic partial state feedback compensator for the
system (1).

Lemma 2.1 (Lin & Qian, 2002). Let x ∈ Rn, y ∈ Rm and f :

Rn
×Rm

→ R be a continuous function. Then, there are smooth scalar
functions a(x) ≥ 0, b(y) ≥ 0, c(x) ≥ 1 and d(y) ≥ 1, such that

|f (x, y)| ≤ a(x)+ b(y) and |f (x, y)| ≤ c(x)d(y). (2)

Lemma 2.2. If f (x, y) is a real-valued continuous function, there
exist smooth scalar functions g(x) ≥ 0 and h(y) ≥ 0 satisfying

f (x, y)(∥x∥ + ∥y∥) ≤ g(x)∥x∥ + h(y)∥y∥. (3)

Proof. From Lemma 2.1 it follows that there exist smooth scalar
functions a(x) ≥ 0 and b(y) ≥ 0, such that

f (x, y)(∥x∥ + ∥y∥) ≤ (a(x)− a(0))∥y∥ + (b(y)− b(0))∥x∥
+ (a(x)+ b(0))∥x∥ + (a(0)+ b(y))∥y∥. (4)

By smoothness, there are smooth functions ā(x) ≥ 0 and b̄(y) ≥ 0
satisfying a(x)− a(0) ≤ ā(x)∥x∥ and b(y)− b(0) ≤ b̄(y)∥y∥. This,
together with the completion of square, leads to

(a(x)− a(0))∥y∥ ≤
1
2
ā2(x)∥x∥2

+
1
2
∥y∥2,

(b(y)− b(0))∥x∥ ≤
1
2
b̄2(y)∥y∥2

+
1
2
∥x∥2. (5)

Substituting (5) into (4) results in (3). �

Lemma 2.3. Let X = [x1, . . . , xn]T ∈ Rn and α : Rn
→ R be

a nonnegative C2 function with α(0) = 0. Then, there exist smooth
scalar functions bi(xi) ≥ 0, i = 1, . . . , n, such that

a(X) ≤

n
i=1

x2i bi(xi). (6)

Proof. By the mean value theoremwith an integration remainder,

α(X)− α(0) =

 1

0
dα(θX) = R(X)X = XTRT (X), (7)

where R(X) :=
 1
0
∂α
∂β

|β=θXdθ is a 1 × n covector.
Note that α(X) ≥ 0 arrives its minimum α(0) at X = 0, thus

∂α
∂X (0) = 0, i.e., RT (0) = 0. Using the same trick, the n-dimensional
vector RT (X) can be decomposed as

RT (X)− RT (0) =

 1

0

∂RT

∂β


β=θX

dθ

X := H(X)X (8)

where H(X) is a symmetric, n × n Hessian matrix.
Using (7)–(8), we arrive at

α(X) ≤ ∥H(X)∥ · ∥X∥
2

≤ β(x1, . . . , xn)(x21 + · · · + x2n),

which, combined with Lemmas 2.1 and 2.2, yields

α(X) = α(x1, . . . , xn) ≤

n
i=1

x2i bi(xi),

for appropriate smooth functions bi(xi) ≥ 0, i = 1, . . . , n. �

3. Global stabilization by dynamic partial state feedback

To control the cascade nonlinear system (1) with time-delay by
means of partial state feedback (i.e., only the state x), we make the
following assumption on (z1, . . . , zr)-dynamics of (1).

Assumption 3.1. For i = 1, . . . , r , there exists a C1 Lyapunov
function V0i(zi), which is positive definite and proper, such that

∂V0i

∂zi
f0i(z̄i, z̄id, x̄i, x̄id) ≤ −∥zi∥2

+ αi(z̄i−1, z̄(i−1)d, x̄i, x̄id), (9)

whereαi(z̄i−1, z̄(i−1)d, x̄i, x̄id) ≥ 0 is aC2 functionwithαi(0, 0, 0, 0)
= 0. �
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