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a b s t r a c t

The delay margin of a time-delay system constitutes the fundamental limit beyond which no single con-
troller may exist to robustly stabilize an unstable delay plant for a range of delay values. For single-input
single-output (SISO) systems with a linear time-invariant (LTI) controller, this margin is known to be fi-
nite for an unstable plant, and bounds on the delay margin are available. This paper extends the existing
results to multi-input multi-output (MIMO) systems. We derive upper bounds on a generalized notion
called delay radius. Our results show that for a delay whose direction is orthogonal to that of an unstable
pole, no constraint is imposed by the pole on that delay, while if the delay direction is parallel to that of a
nonminimum phase zero, its allowable range will be further restricted by the nonminimum phase zero.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the feedback systemdepicted in Fig. 1, where Pτ (s)
is a family of plants that vary with an unknown delay τ , with P0(s)
being the delay-free plant:

Pτ (s) = e−τ sP0(s), τ ≥ 0. (1)

The delay margin problem is to determine

τ ∗
= inf {r : There exists no K(s) to stabilize

Pτ (s), ∀τ ∈ [0, r]} . (2)

In other words, we seek to find the largest delay range within
which Pτ (s) can be robustly stabilized by a fixed, single finite-
dimensional LTI controller K(s). This problem has been under
scrutiny for some time. In Michiels and Niculescu (2007) (pp. 154),
the delaymarginwas determined for the first-order systemachiev-
able by static feedback, and in Silva, Datta, and Bhattacharyya
(2002) for the first-order system when PID controllers are used.
More generally, for SISO systems with a single unstable pole, the
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exact margin was found in Middleton and Miller (2007), which in
turn serves as an upper bound for general LTI systems with an ar-
bitrary number of unstable poles. These bounds consequently pro-
vide a limit beyond which no single LTI output feedback controller
may exist to robustly stabilize a delay plant family within themar-
gin. In contrast, lower bounds on the delaymargin were developed
by the authors in Qi, Zhu, and Chen (2016), which provide instead,
an interval of delay values ensuring that the delay plant can be ro-
bustly stabilized over the interval. Itwas shown therein aswell that
the lower bounds can be extended to MIMO delay systems with
time-varying delays.

The purpose of this note is to extend the aforementioned re-
sults to MIMO LTI plants with constant, uncertain delays. Specif-
ically, we seek to generalize the bounds in Middleton and Miller
(2007) to MIMO systems. While following the spirit of Middleton
and Miller (2007), MIMO systems do result in complications and
our development sheds new insights. First, for MIMO systems, de-
laymargin ceases to be an applicablemeasure. For this purpose, we
derive upper bounds on the delay radii, and formore specialized in-
stances, their exact expressions; delay radius has been previously
introduced in Qi et al. (2016) andwas shown to be useful in charac-
terizing robust stabilizability of MIMO delay systems. Second and
more importantly, the stabilization of a MIMO plant is particularly
complicated by the directionality properties of plant unstable poles
and proves significantlymore challenging. This difficultymanifests
itself through the interactions among the delays and the unstable
poles, which exhibits a strong directional dependence. For exam-
ple, our result shows thatwhen the direction of a pole is orthogonal
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Fig. 1. Feedback control of a delay plant.

to the direction in which the delay takes place, the pole imposes
no constraint on the allowable length of that delay. It is also shown
that nonminimumphase zeroswill confine further the range of de-
lays for which robust stabilization is possible, when the directions
of the nonminimum phase zeros are aligned with those of the de-
lays.

Our results complement the lower bounds on the delay radii
obtained previously in Qi et al. (2016) and contribute to a series
of endeavors in tackling the longstanding delay margin problem
(Devanathan, 1995; Foias, Özbay, & Tannenbaum, 1996; Ju &
Zhang, 2015; Middleton & Miller, 2007; Qi et al., 2016) focused on
the use of LTI controllers. It is worth noting however, that when
more sophisticated classes of controllers are considered, then the
delay margin can in fact be made infinite. Indeed, this has been
shown to be possible by employing linear periodic controllers
(Miller & Davison, 2005), nonlinear periodic controllers (Gaudette
& Miller, 2014), and nonlinear adaptive controllers (Bekiaris-
Liberis & Krstic, 2013; Bresch-Pietri, Chauvin, & Petit, 2012); in
other words, with these controllers, an LTI delay plant can be
stabilized for arbitrarily long uncertain delays. Nonetheless, LTI
controllers are still desired for their ease of implementation.

The notation used in this paper is standard.We denote the open
right-half plane by C+ := {s : Re(s) > 0}. For any two unitary
vectors u, v ∈ Cn, we denote the principal angle ̸ (u, v) between
the directions spanned by u, v ∈ Cn via
cos ̸ (u, v) = |uHv|.

The two directions are said to be orthogonal if cos ̸ (u, v) = 0, and
parallel if cos ̸ (u, v) = 1.

2. Delay radii of MIMO systems

The MIMO delay plants under consideration in this paper are in
the form of
Pτ̂ (s) = Λτ̂ (s)P0(s), (3)
where P0(s) ∈ Cn×m is the transfer function matrix of the delay-
free part, andΛτ̂ (s) ∈ Cn×n is a transfer functionmatrix consisting
of l output delays:
Λτ̂ (s) = Vdiag


e−τ1s, . . . , e−τls


VH , τ1 ≥ 0, . . . , τl ≥ 0,

with V =

v1 v2 · · · vl


, vi ∈ Cn, being a unitary. Let the

delays be represented in the delay parameter space by the vector
τ̂ = [τ1, . . . , τl]T ∈ Rl.

Remark 1. We use the unitary vector vi to represent the direction
of the ith delay e−τis. This formulation allows us to describe in a
more general manner the spatial effect of each delay element, thus
representing more fully the directional dependence displayed by
delays arising in different channels whose lengths may differ from
channel to channel. In the special case where vi is the ith Euclidean
coordinate, the delay part becomes

Λτ̂ (s) = diag

e−τ1s, . . . , e−τls


,

which is the standard description modeling fully decoupled delays
in each channel. Note that the present formulation is also more
consistent with the interpretation that a delay can be considered
an extreme nonminimum phase zero at the infinity; in this case,
vi can be used to characterize the direction of that nonminimum
phase zero. �

Assume that P0(s) can be stabilized by some controllerK(s) and de-
fine with the delay-free plant the system’s output complimentary
sensitivity function

T0(s) = P0(s)K(s)[I + P0(s)K(s)]−1.

It can be easily seen (Qi et al., 2016) that Pτ̂ (s) can be stabilized by
K(s) if and only if

det[I + (Λτ̂ (s) − I)T0(s)] ≠ 0, ∀s ∈ C̄+. (4)

The condition (4) thus characterizes the region of the delays for
which Pτ̂ (s) can be robustly stabilized by K(s). In Qi et al. (2016),
the authors introduced the notion of delay radius of the delay
parameter vector τ̂ = [τ1, . . . , τl]

T to quantify this region, defined
as

rq = inf

r : There exists no K(s) to stabilize

Pτ̂ (s), ∀τ̂ , ∥τ̂∥q ≤ r

,

where

∥τ̂∥q =




i

|τi|
q

1/q

q ∈ [1, ∞),

max
i

|τi| q = ∞.

Evidently, to determine the exact delay radius requires synthesiz-
ing a controller K(s) that can stabilize the family of plants Pτ̂ (s) for
all ∥τ̂∥q < rq, which is a rather difficult problem. With this recog-
nition, we seek to derive bounds on the delay radius.

3. Main results

In Middleton and Miller (2007), upper bounds are derived
for the delay margin of SISO systems. In this section we extend
the results of Middleton and Miller (2007) to MIMO systems, by
deriving upper bounds on the delay radii. Of particular interest is
the delay radius r∞; it should be evident that any upper bound on
r∞ serves as an upper bound on rq, for any q ∈ [1, ∞). The results
give estimates of regions in the delay parameter space for which
no controller may exist to stabilize the plant.

We first quote two preliminary lemmas (see, e.g., Chen, 2000;
Middleton & Miller, 2007).

Lemma 1. Let α, β ≥ 0. Then,
(i) tan−1 α ≤ α.
(ii)

tan−1 α − tan−1 β
 ≤ |α − β|.

Lemma 2. Let p ∈ C+ be an unstable pole and z ∈ C+ a
nonminimum phase zero of P0(s). Suppose that K(s) stabilizes P0(s).
Then, there exist some unitary vectors η ∈ Cn and ζ ∈ Cn such that

T0(p)η = η.

ζHT0(z) = 0,

where η is called the input pole direction vector associated with the
pole p ∈ C+, and ζ the output direction vector associated with the
zero z ∈ C+.

In what follows we shall denote, for any vector η,

I =

i : vH

i η ≠ 0

.

3.1. Real poles

Theorem 1. Let p ∈ C+ be a real unstable pole of P0(s) with input
direction vector η ∈ Cn. Suppose that for all i ∈ I ,

τ ∗

i ≥
2
p
. (5)
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