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a b s t r a c t

This paper presents nonlinear model predictive control (NMPC) and nonlinear moving horizon estimation (MHE) formulations for controlling the crystal size and
shape distribution in a batch crystallization process. MHE is used to estimate unknown states and parameters prior to solving the NMPC problem. Combining these
two formulations for a batch process, we obtain an expanding horizon estimation problem and a shrinking horizon model predictive control problem. The batch
process has been modeled as a system of differential algebraic equations (DAEs) derived using the population balance model (PBM) and the method of moments.
Therefore, the MHE and NMPC formulations lead to DAE-constrained optimization problems that are solved by discretizing the system using Radau collocation on
finite elements and optimizing the resulting algebraic nonlinear problem using Ipopt. The performance of the NMPC–MHE approach is analyzed in terms of setpoint
change, system noise, and model/plant mismatch, and it is shown to provide better setpoint tracking than an open-loop optimal control strategy. Furthermore, the
combined solution time for the MHE and the NMPC formulations is well within the sampling interval, allowing for real world application of the control strategy.

© 2017 Published by Elsevier Ltd.

1. Introduction

Batch crystallization is a crucial process in the pharmaceutical
industry because more than 90% of the active pharmaceutical ingre-
dients (API) are in the form of crystals (Alvarez & Myerson, 2010).
The crystal size and shape distribution is of great concern to both
product quality and downstream processing such as filtration. Therefore,
the goal of batch crystallization is to control the crystal qualities to
achieve the desired size and shape distribution at the end of the batch
process. Primarily because of the technology limitations to monitor the
crystal shape (Nagy, Fevotte, Kramer, & Simon, 2013), early works
in the crystallization research community focused on modeling and
controlling the size distribution of crystals (Mesbah, Kramer, Hues-
man, & Van den Hof, 2009; Qamar, Mukhtar, Seidel-Morgenstern, &
Elsner, 2009). Focused Beam Reflectance Measurements (FBRM) is
frequently used to monitor the size distribution online (Braatz, 2002;
Fujiwara, Nagy, Chew, & Braatz, 2005; Puel, Févotte, & Klein, 2003).
The last decade has witnessed a significant progress in monitoring
and modeling the shape distribution of crystals allowing the standard
feedback control (Mesbah, Huesman, Kramer, Nagy, & Van den Hof,
2011; Mesbah, Nagy, Huesman, Kramer, & Van den Hof, 2012; Nagy
& Braatz, 2003; Patience & Rawlings, 2001; Wan, Wang, & Ma, 2009;
Wang, De Anda, & Roberts, 2007). Derived using the multidimensional
population balance model (PBM) (Hulburt & Katz, 1964; Ramkrishna,
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2000) and the method of moments, the dynamic evolution of the crystal
size and shape distribution can be modeled as a system of differential
algebraic equations. The size and shape distribution can be controlled
by manipulating the cooling profile of the reactor, which directly affects
the supersaturation.

To balance the trade-off between the size and shape distribu-
tion, Acevedo, Tandy, and Nagy (2015) proposes a multi-objective
optimization approach to control both the size and shape distribution
offline. However, in the presence of model/plant mismatch and system
noise, the real plant trajectory can be quite different from the optimal
trajectory obtained from the open-loop multi-objective optimization.
Therefore, in this paper, we developed a nonlinear model predictive
control (NMPC) formulation that can be used to control the crystal size
and shape distribution in real-time and in the presence of modeling and
measurement noise.

Linear MPC has been a popular advanced control strategy in industry
for many years (Qin & Badgwell, 2003). Because of the advances in both
computational power and optimization algorithms, nonlinear model
predictive control (NMPC) has become more computational feasible
and is more appropriate for inherently nonlinear systems to achieve
higher product quality and satisfy tighter regulations (Mayne, Rawlings,
Rao, & Scokaert, 2000; Rawlings, 2000). The basic idea of NMPC is
to solve an optimal control problem at each sampling instance with
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the updated measured or estimated states. The control values for only
the next sampling instance are implemented and the entire process is
repeated in the next sampling cycle. For batch processes, since our real
interest is in the product quality at the end of the batch, end-point based
shrinking horizon NMPC formulation is frequently used.

Nevertheless, for many processes, it is not possible (or cost effective)
to accurately measure all states online, and model parameters may
change from batch to batch. This challenge drives the need for a state
estimator to reconstruct unknown states and parameters. The Extended
Kalman filter (EKF) is a popular state estimator for unconstrained sys-
tems (Prasad, Schley, Russo, & Bequette, 2002). However, this technique
is not appropriate for the batch crystallization model because of the
highly nonlinear dynamics and hard constraints such as nonnegative
concentrations. In contrast, nonlinear moving horizon estimation (MHE)
uses nonlinear constrained optimization to estimate unknown states
and parameters and has proven its advantages over EKF in many
applications (Haseltine & Rawlings, 2005; Rao, Rawlings, & Mayne,
2003; Rawlings & Bakshi, 2006). Therefore, in this work, we propose
an MHE formulation that can be used to estimate the unmeasured
states in our model prior to solving the NMPC problem for the batch
crystallization process.

The computational burden of this approach is that at each sampling
instance, an expanding horizon estimation problem and a shrinking
horizon model predictive control problem need to be solved. Both
problems are DAE-constrained optimization problems and there exist
multiple solution approaches. ‘‘Optimize then discretize’’ or indirect
approaches try to solve the first-order optimality conditions for the
DAE-constrained problem. For problems without inequality constraints,
the first-order optimality conditions can be formulated as boundary
value DAE problems. However, for problems with active inequality
constraints, determining the switch points of the inequality constraints
can become very challenging and thus limits the application of these
methods. On the contrary, ‘‘discretize then optimize’’ or direct ap-
proaches discretize the control variables and solve the resulting non-
linear programming (NLP) problems. Among ‘‘discretize then optimize’’
approaches, the sequential approach discretizes only the control vari-
ables and treats the DAE system as a black box. A DAE integrator is
used to simulate the system at each iteration and calculate its sensitivity
with regards to the discretized control variables. One drawback of this
approach is that the solution time increases significantly when the
controls are discretized finer. However, a finer discretization of the con-
trols can often improve the performance of the NMPC. In contrast, the
simultaneous approach (Biegler, 2007; Biegler, Cervantes, & Wächter,
2002) discretizes both control and state variables and optimizes the
resulting algebraic nonlinear problem with an NLP solver. The perfor-
mance of the simultaneous approach is less dependent on the number
of discretized control variables. Another advantage of this approach
is that state constraints can be formulated in a more straightforward
way. Therefore, this paper chooses the simultaneous approach to solve
these DAE-constrained optimization problems arising from the NMPC–
MHE formulations. One challenge of using the simultaneous approach
is that the burden of manually discretizing the DAE system before it
is embedded into an optimization formulation often lies on the user.
However, packages such as the Modelica-based JModelica.org platform
(Åkesson, Årzén, Gäfvert, Bergdahl, & Tummescheit, 2010) allow for
straightforward declaration of differential equations and automatically
perform this transcription process. Therefore, we implement these con-
trol formulations for batch crystallization within the Modelica library,
which is already interfaced with solvers like Ipopt. If Ipopt is not fast
enough, some parallel solvers can potential be used (Cao, Laird, &
Zavala, 2016; Cao, Seth, & Laird, 2016; Kang, Cao, Word, & Laird, 2014).

This paper is organized as follows: a description of the unseeded
batch crystallization model is presented in Section 2. Section 3 presents
the NMPC–MHE approaches and efficient methods to solve the related
optimization problems. Section 4 demonstrates the performance of the
NMPC–MHE compared with the open-loop control in terms of setpoint
change, system noise, and model/plant mismatch. Final conclusions are
presented in Section 5.

2. Multidimensional unseeded batch crystallization model

This section provides a brief description of the multidimensional un-
seeded batch crystallization model. The details can be found in Acevedo
and Nagy (2014). The population balance model (PBM) has been widely
used to describe the crystallization process (Cao, Kang, Nagy, & Laird,
2016; Mesbah et al., 2012). Considering only the effect of growth and
nucleation, the population balance equation for a well-mixed batch
crystallization process can be expressed as
𝜕
𝜕𝑡
𝑛(𝑡, 𝑋) + ▿𝑋 [𝐺𝑛(𝑡, 𝑋)] = 𝐵𝛿(𝑋 −𝑋0) (1a)

𝑛(0, 𝑋) = 𝑛0(𝑋), (1b)

where 𝑛(𝑡, 𝑋) is the density distribution at time 𝑡, 𝑋 is the vector of
characteristic lengths, 𝐺 is the vector of growth rates, 𝐵 is the nucleation
rate, 𝑋0 is the size of the nuclei, 𝛿 is the Dirac delta function acting
at 𝑋 = 𝑋0, and 𝑛0(𝑋) is the initial seed distribution. The population
balance model can be transformed into a set of ordinary differential
equations (ODEs) using the method of moments (MOM). If we only
consider two characteristic dimensions, the length 𝐿 and the width 𝑊
of crystals, the moments can be expressed by

𝜇𝑖𝑗 = ∫

∞

0 ∫

∞

0
𝑛(𝑡, 𝑋)𝑊 𝑖𝐿𝑗𝑑𝑊 𝑑𝐿. (2a)

The ODEs obtained from the MOM with the assumption that the nucleus
size is negligible, are given by
𝑑𝜇00
𝑑𝑡

= 𝐵 (3a)
𝑑𝜇10
𝑑𝑡

= 𝐺1𝜇00 (3b)
𝑑𝜇01
𝑑𝑡

= 𝐺2𝜇00 (3c)
𝑑𝜇11
𝑑𝑡

= 𝐺1𝜇01 + 𝐺2𝜇10 (3d)
𝑑𝜇20
𝑑𝑡

= 2𝐺1𝜇10, (3e)

where 𝐺1 and 𝐺2 are the growth rates along the width and length of
the crystals respectively, and 𝐵 is the nucleation rate. In this work, size
independent growth rates and primary nucleation rate are considered
as follows:

𝐺1 = 𝑘𝑔1𝑆
𝑔1 (4a)

𝐺2 = 𝑘𝑔2𝑆
𝑔2 (4b)

𝐵 = 𝑘𝑏𝑆
𝑏 (4c)

𝑆 =
𝐶 − 𝐶𝑠(𝑇 )
𝐶𝑠(𝑇 )

, (4d)

where the kinetic parameters 𝑘𝑔1 , 𝑘𝑔2 , 𝑔1, 𝑔2, 𝑘𝑏, and 𝑏 are usually sen-
sitive to process conditions. 𝑆 is the relative supersaturation, 𝐶 is the
solute concentration, and 𝐶𝑠 is the equilibrium concentration at a given
temperature, which can be expressed using a polynomial expression,
given by

𝐶𝑠(𝑇 ) = 𝑐𝑇 2 + 𝑑𝑇 + 𝑒. (5a)

According to the mass balance equation, the evolution of the solute
concentrate is given by

𝑑𝐶
𝑑𝑡

= −2𝜌𝑐𝑘𝑣𝐺1(𝜇11 − 𝜇20) − 𝜌𝑐𝑘𝑣𝐺2𝜇20, (6a)

where 𝜌𝑐 is the density of the solution and 𝑘𝑣 is a constant volumetric
shape factor.

3. Computationally efficient online NMPC–MHE

At the end of the batch crystallization process, the product qualities
are evaluated in terms of the size and shape distribution of crystals.
Therefore, the mean length (𝑀𝐿) and aspect ratio (𝐴𝑅) are used to
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